TensorFlow Keras从入门到精通

Keras 是与 ​ ​TensorFlow​​ 一起使用的更高级别的作为后端的 API。添加层就像添加一行代码一样简单。在模型架构之后,使用一行代码,你可以编译和拟合模型。之后,它可以用于预测。变量声明、占位符甚至会话都由 API 管理。

具体做法

  1. 定义模型的类型。Keras 提供了两种类型的模型:序列和模型类 API。Keras 提供各种类型的神经网络层:

TensorFlow从0到1之TensorFlow Keras及其用法(20)_损失函数

在 model.add() 的帮助下将层添加到模型中。依照 Keras 文档描述,Keras 提供全连接层的选项(针对密集连接的神经网络):

TensorFlow从0到1之TensorFlow Keras及其用法(20)_参数传递_02

注意,密集层实现的操作:output=activation(dot(input,kernel)+bias),其中 activation 是元素激活函数,是作为激活参数传递的,kernel 是由该层创建的权重矩阵,bias 是由该层创建的偏置向量(仅在 use_bias 为 True 时适用)。
可以使用它来添加尽可能多的层,每个隐藏层都由前一层提供输入。只需要为第一层指定输入维度:

TensorFlow从0到1之TensorFlow Keras及其用法(20)_tensorflow_03

一旦模型被定义,需要选择一个损失函数和优化器。Keras 提供了多种损失函数(mean_squared_error、mean_absolute_error、mean_absolute_percentage_error、categorical_crossentropy 和优化器(sgd、RMSprop、Adagrad、Adadelta、Adam 等)。损失函数和优化器确定后,可以使用 compile(self,optimizer,loss,metrics=None,sample_weight_mode=None)来配置学习过程:

TensorFlow从0到1之TensorFlow Keras及其用法(20)_tensorflow_04

使用 fit 方法训练模型:

TensorFlow从0到1之TensorFlow Keras及其用法(20)_神经网络_05

可以在 predict 方法 predict(self,x,batch_size=32,verbose=0) 的帮助下进行预测:

TensorFlow从0到1之TensorFlow Keras及其用法(20)_占位符_06

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空