CPU是中央处理器,Central Processing Unit 英文的缩写,电脑中一个最重要,最核心的东西,相当一个人的大脑,是用来思考、分析和计算的。目前市面上比较常见的CPU来自两个品牌,一个是intel公司生产的,另一个是AMD公司生产的。
CPU都采用针脚式接口与主板相连,而不同的接口的CPU在针脚数上各不相同。CPU主板上的PCB封装焊盘引脚是经过走线与其他电子元器件相连的,引脚越多、引脚的间距越小都会存在一定的可制造性问题。
CPU芯片的元器件封装引脚一般采用的是BGA或者是QFP类型,BGA和QFP是两种不同的封装形式。
BGA(Ball Grid Array)是一种球形网格阵列封装,其引脚是通过排列在封装底部的球形焊盘与PCB焊接连接的。BGA封装的主要特点是引脚密度高、信号传输速度快、可靠性强、散热性好,广泛应用于高性能芯片和系统集成领域。
QFP(Quad Flat Package)是一种四角平面封装,其引脚排列在封装底部的封装体中,通过焊线或焊盘与PCB焊接连接。QFP封装的主要特点是引脚数量多、接口简单、容易制造和焊接,适用于许多普通的解决方案。
因此,BGA和QFP的区别在于其封装形式、引脚排列和使用场景,BGA主要用于高性能和大规模系统集成领域,而QFP则可广泛应用于许多普通的应用场合。
BGA扇出是将BGA封装芯片的引脚连接到其他器件或接口的过程。由于BGA封装引脚密度很高,因此需要特殊设计和安排引脚扇出布局,以确保连接到PCB上的其他器件和接口。下面介绍一些常用的BGA扇出方法:
BGA芯片的扇出过孔是朝外打孔扇出,BGA上下左右分成四个独立的区域,从中间进行分割分别往四边。这样扇出的好处,是可以预留十字通道,方便进行内层和GND的通道平面分割和内层布线。
BGA芯片上下左右四个面中,若两个焊盘中间走一条布线,靠外侧的两排焊盘不用进行扇出操作,直接在表层通过拉线往外走,这样可以节省电气层。若两个焊盘中间走两条布线,靠外侧的三排焊盘不用进行扇出操作。当所有的引线走出BGA区域之后,引出布线可以散开走线,加大线和线之间的距离,以便于减少高速信号直接的串扰。
BGA芯片一般电源和GND网络焊盘引脚都位于BGA中间部分,电源和GND的网络都是通过内层平面进行连接,这些引脚扇出要注意方向,通常来说都是整体往一个方向进行扇出,这样扇出的引脚都集中在一个区域,方便进行内层区域分割,避免电源和GND平面被切断。
最常见的BGA扇出方式是VIPPO(Via in Pad Plated Over)方式(也就是盘中孔)。这种方式将电路板中的通孔直接在BGA引脚所在的焊盘中作为一个小孔设计,然后把通孔无缝的贴在芯片的焊盘上,然后用电解电镀的方法为其加厚一层金属。这种方式可减小交叉干扰和提高信号完整性,并且引脚数量多时占用空间更小。
需要注意的是,BGA扇出的设计需要考虑到信号完整性、静电保护、电源分层以及信噪比等因素,需要根据具体的设计需求采用不同的扇出方法来保证电路的可靠性和稳定性。
QFP芯片的封装引脚同样也需要做扇出,QFP封装引脚通常呈现网格状排列,密度相对较低,因此QFP扇出相对于BGA扇出较为简单。
对于CPU芯片,由于工作时的高负载和高速特性,需要在电源电路周围添加足够的滤波电容进行过滤,以保证电源线的稳定性和噪声抑制。此外,还需要在尽可能靠近CPU背面的位置添加滤波电容,以保证电容对于CPU电源的过滤效果最佳。具体的设计方法如下:
需要根据芯片数据手册或官方设计规范,确认所需的电容值进行选择。
根据电容值,选择合适的电容件型号(例如固体电容或铝电解电容等)。考虑到CPU背面空间有限的情况下,可以考虑选择高密度电容和小型电容进行布局。
将所选电容件布置在尽可能靠近CPU背面的位置,采用对称、集中式布置,以保证电容对于电路的均匀影响。
根据电路设计的需要,设计合适的电容件布线,以保证高频噪声能够得到充分的抑制,同时避免电容件之间的交叉影响。在PCB设计中一般使用模拟仿真工具来对电路进行仿真,以保证布线质量和性能的稳定。
对于电解电容,一定要特别注意极性,否则会导致电容损坏。
总之,在CPU芯片的元器件封装PCB设计中添加背面电容是保证电路稳定和可靠性的重要措施,需要在设计中充分考虑。
含有CPU芯片的PCB设计需要考虑制造的可行性以及成本效益,一般需要考虑以下几个方面:
一般而言,含有CPU芯片的PCB板的层数不宜过多,一般不超过10层,过多的层数会影响制造的复杂度和成本。
可以选择具有高性价比的常规FR4材料,也可以选择高性能材料如RO4003C等,具体选择根据设计需求和成本预算来决定。
合理的布线规划在设计后期和制造过程中非常重要,可以通过使用高密度布线技术和合理引出线路等方法来提高 PCB 的性能和可制造性。目前行业内大部分制造的制成能力是线宽线距3/3mil,线宽线距越小成本越高。
CPU芯片在工作时会产生大量热量,需要进行散热设计,同时也需要保护电路板不受外界物理和化学环境的影响,保证CPU芯片的稳定工作。
总之,CPU芯片的PCB设计需要充分考虑到制造的可行性和成本效益,要综合考虑各个因素来设计出符合要求的成品。
华秋DFM软件是一款可制造性检查的工艺软件,针对CPU芯片的可制造性,可以检查最小的线宽、线距,焊盘的大小,以及内层的孔到线的距离。还能提前预防CPU芯片位置的PCB超出制成能力,其存在的可制造性问题。
当然以上只是华秋DFM软件的基础检测功能,它的PCB裸板分析功能具有19大项检测功能,52细项检查规则,支持各大主流文件一键解析,只需简单的一键操作,即可快速方便的获得检查报告。
同时汇聚了阻抗计算、利用率计算、连片拼版等各种智能工具……
其PCBA装配分析功能具有10大项、234细项检查规则,涵盖所有可能发生的组装性问题,比如器件分析,引脚分析,焊盘分析等,可解决多种工程师无法提前预料的生产情况。
华秋DFM软件是国内首款免费PCB可制造性和装配分析软件,拥有300万+元件库,可轻松高效完成装配分析。目前已有30+万工程师正在使用,更有超多行业大咖强烈推荐!操作简单易上手,不光提高工作效率,还能提高容错率!有需要可以下载体验。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删