Ma5激波/边界层干扰:计算报告深度剖析

算例介绍

该激波/边界层干扰算例是由DLR的Schulein等人设计的。 (Schulein, E., Krogmann, P., and Stanewsky, E., "Documentation of Two-Dimensional Impinging Shock/Turbulent Boundary Layer Interaction Flow", DLR Report DLR IB 223-96 A 49, October 1996.)来流马赫数为5.0,激波由一块10度尖劈产生,并撞击到长500毫米长的平板上,与平板上的湍流边界层发生相互干扰。计算得到的摩擦力曲线将与实验数据进行比较。


表 1 Ma5激波/边界层干扰计算参数

参数参数值
马赫数5.0
尖劈角度10°
来流静温68.3 K
来流静压4.01×103 Pa

2.网格生成

图片1.png

图1 计算网格

计算网格([http://www.grc.nasa.gov/WWW/wind/valid/m5swbli/study01/]{.underline}m5swbli1.tar)为非结构网格,包括近壁区的四边形网格和空间的三角形网格。四边形网格约4.1万,四边形网格约1.9万。激波/边界层干扰区流场梯度大,对该区域网格沿流向适当加密。


3.SU2求解器设置

3.1 流场求解cfg文件设置

下面以SA模型为例,介绍Ma5激波/边界层干扰算例的参数设置。

+-----------------------------------------------------------------------+

  | \% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM |

  | DEFINITION ------------% |

  | |

  | \% |

  | |

  | \% Physical governing equations (EULER, NAVIER_STOKES, |

  | |

  | \% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |

  | |

  | \% POISSON_EQUATION) |

  | |

  | PHYSICAL_PROBLEM= NAVIER_STOKES |

  | |

  | \% |

  | |

  | \% Specify turbulent model (NONE, SA, SA_NEG, SST) |

  | |

  | KIND_TURB_MODEL= SA |

  | |

  | \% |

  | |

  | \% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |

  | |

  | MATH_PROBLEM= DIRECT |

  | |

  | \% |

  | |

  | \% Restart solution (NO, YES) |

  | |

  | RESTART_SOL= NO |

  | |

  | \% -------------------- COMPRESSIBLE FREE-STREAM |

  | DEFINITION --------------------% |

  | |

  | \% |

  | |

  | \% Mach number (non-dimensional, based on the free-stream values) |

  | |

  | MACH_NUMBER= 5.0 |

  | |

  | \% |

  | |

  | \% Angle of attack (degrees, only for compressible flows) |

  | |

  | AOA= 0.0 |

  | |

  | \% |

  | |

  | \% Free-stream pressure (101325.0 N/m\^2 by default, only Euler |

  | flows) |

  | |

  | FREESTREAM_PRESSURE= 4.01E+03 |

  | |

  | \% |

  | |

  | \% Free-stream temperature (273.15 K by default) |

  | |

  | FREESTREAM_TEMPERATURE= 6.83E+01 |

  | |

  | \% |

  | |

  | \% Free-stream temperature (1.2886 Kg/m3 by default) |

  | |

  | FREESTREAM_DENSITY= 2.04E-01 |

  | |

  | \% |

  | |

  | \% Free-stream option to choose if you want to use Density |

  | (DENSITY_FS) or Temperature (TEMPERATURE_FS) to initialize the |

  | solution |

  | |

  | FREESTREAM_OPTION= TEMPERATURE_FS |

  | |

  | \% |

  | |

  | \%Init option to choose between Reynolds (default) or thermodynamics |

  | quantities for initializing the solution (REYNOLDS, TD_CONDITIONS) |

  | |

  | INIT_OPTION= TD_CONDITIONS |

  | |

  | \% |

  | |

  | \% Compressible flow non-dimensionalization (DIMENSIONAL, |

  | FREESTREAM_PRESS_EQ_ONE, |

  | |

  | \% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) |

  | |

  | REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE |

  | |

  | \% ---------------------- REFERENCE VALUE |

  | DEFINITION ---------------------------% |

  | |

  | \% |

  | |

  | \% Reference origin for moment computation |

  | |

  | REF_ORIGIN_MOMENT_X = 0.00 |

  | |

  | REF_ORIGIN_MOMENT_Y = 0.00 |

  | |

  | REF_ORIGIN_MOMENT_Z = 0.00 |

  | |

  | \% |

  | |

  | \% Reference length for pitching, rolling, and yawing non-dimensional |

  | moment |

  | |

  | REF_LENGTH= 1.0 |

  | |

  | \% |

  | |

  | \% Reference area for force coefficients (0 implies automatic |

  | calculation) |

  | |

  | REF_AREA= 1.0 |

  | |

  | \% -------------------- BOUNDARY CONDITION |

  | DEFINITION --------------------------% |

  | |

  | \% |

  | |

  | \% Navier-Stokes wall boundary marker(s) (NONE = no marker) |

  | |

  | \%MARKER_HEATFLUX= ( wall, 0.0 ) |

  | |

  | \% Format: ( marker name, constant wall temperature (K), ... ) |

  | |

  | MARKER_ISOTHERMAL= ( wall-up,300,wall-down,300 ) |

  | |

  | \% Format: (inlet marker, temperature, static pressure, velocity_x, |

  | |

  | \% velocity_y, velocity_z, ... ), i.e. primitive variables |

  | specified. |

  | |

  | MARKER_SUPERSONIC_INLET= ( inlet, 6.83E+01,4.01E+03,8.28E+02,0,0 ) |

  | |

  | MARKER_SUPERSONIC_OUTLET= ( outlet ) |

  | |

  | MARKER_SYM= ( Symmetry ) |

  | |

  | \% |

  | |

  | \% Farfield boundary marker(s) (NONE = no marker) |

  | |

  | \%MARKER_FAR= ( FARFIELD ) |

  | |

  | \% |

  | |

  | \% Marker(s) of the surface to be plotted or designed |

  | |

  | MARKER_PLOTTING= ( wall-down ) |

  | |

  | \% |

  | |

  | \% Marker(s) of the surface where the functional (Cd, Cl, etc.) will |

  | be evaluated |

  | |

  | MARKER_MONITORING= ( wall-up,wall-down ) |

  | |

  | \% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL |

  | METHOD ---------------% |

  | |

  | \% |

  | |

  | \% Numerical method for spatial gradients (GREEN_GAUSS, |

  | WEIGHTED_LEAST_SQUARES) |

  | |

  | NUM_METHOD_GRAD= GREEN_GAUSS |

  | |

  | \% |

  | |

  | \% Courant-Friedrichs-Lewy condition of the finest grid |

  | |

  | CFL_NUMBER= 10 |

  | |

  | \% |

  | |

  | \% Adaptive CFL number (NO, YES) |

  | |

  | CFL_ADAPT= YES |

  | |

  | \% |

  | |

  | \% Parameters of the adaptive CFL number (factor down, factor up, CFL |

  | min value, |

  | |

  | \% CFL max value ) |

  | |

  | CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) |

  | |

  | \% |

  | |

  | \% Number of total iterations |

  | |

  | EXT_ITER= 10000 |

  | |

  | \% |

  | |

  | \% Linear solver for the implicit formulation (BCGSTAB, FGMRES) |

  | |

  | LINEAR_SOLVER= BCGSTAB |

  | |

  | \% |

  | |

  | \% Min error of the linear solver for the implicit formulation |

  | |

  | LINEAR_SOLVER_ERROR= 1E-6 |

  | |

  | \% |

  | |

  | \% Max number of iterations of the linear solver for the implicit |

  | formulation |

  | |

  | LINEAR_SOLVER_ITER= 20 |

  | |

  | \% -------------------------- MULTIGRID |

  | PARAMETERS -----------------------------% |

  | |

  | \% |

  | |

  | \% Multi-Grid Levels (0 = no multi-grid) |

  | |

  | MGLEVEL= 0 |

  | |

  | \% |

  | |

  | \% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |

  | |

  | MGCYCLE= W_CYCLE |

  | |

  | \% |

  | |

  | \% Multi-grid pre-smoothing level |

  | |

  | MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |

  | |

  | \% |

  | |

  | \% Multi-grid post-smoothing level |

  | |

  | MG_POST_SMOOTH= ( 0, 0, 0, 0 ) |

  | |

  | \% |

  | |

  | \% Jacobi implicit smoothing of the correction |

  | |

  | MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |

  | |

  | \% |

  | |

  | \% Damping factor for the residual restriction |

  | |

  | MG_DAMP_RESTRICTION= 0.95 |

  | |

  | \% |

  | |

  | \% Damping factor for the correction prolongation |

  | |

  | MG_DAMP_PROLONGATION= 0.95 |

  | |

  | \% -------------------- FLOW NUMERICAL METHOD |

  | DEFINITION -----------------------% |

  | |

  | \% |

  | |

  | \% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, |

  | HLLC, |

  | |

  | \% TURKEL_PREC, MSW) |

  | |

  | CONV_NUM_METHOD_FLOW= JST |

  | |

  | \% |

  | |

  | \% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow |

  | equations. |

  | |

  | \% Required for 2nd order upwind schemes (NO, YES) |

  | |

  | MUSCL_FLOW= YES |

  | |

  | \% |

  | |

  | \% Slope limiter (VENKATAKRISHNAN, MINMOD) |

  | |

  | SLOPE_LIMITER_FLOW= VENKATAKRISHNAN |

  | |

  | \% |

  | |

  | \% Coefficient for the limiter (smooth regions) |

  | |

  | VENKAT_LIMITER_COEFF= 0.03 |

  | |

  | \% |

  | |

  | \% 2nd and 4th order artificial dissipation coefficients |

  | |

  | JST_SENSOR_COEFF= ( 0.5, 0.02 ) |

  | |

  | \% |

  | |

  | \% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, |

  | EULER_EXPLICIT) |

  | |

  | TIME_DISCRE_FLOW= EULER_IMPLICIT |

  | |

  | \% -------------------- TURBULENT NUMERICAL METHOD |

  | DEFINITION ------------------% |

  | |

  | \% |

  | |

  | \% Convective numerical method (SCALAR_UPWIND) |

  | |

  | CONV_NUM_METHOD_TURB= SCALAR_UPWIND |

  | |

  | \% |

  | |

  | \% Monotonic Upwind Scheme for Conservation Laws (TVD) in the |

  | turbulence equations. |

  | |

  | \% Required for 2nd order upwind schemes (NO, YES) |

  | |

  | MUSCL_TURB= NO |

  | |

  | \% |

  | |

  | \% Time discretization (EULER_IMPLICIT) |

  | |

  | TIME_DISCRE_TURB= EULER_IMPLICIT |

  | |

  | \% ---------------- ADJOINT-FLOW NUMERICAL METHOD |

  | DEFINITION -------------------% |

  | |

  | \% Adjoint problem boundary condition (DRAG, LIFT, SIDEFORCE, |

  | MOMENT_X, |

  | |

  | \% MOMENT_Y, MOMENT_Z, EFFICIENCY, |

  | |

  | \% EQUIVALENT_AREA, NEARFIELD_PRESSURE, |

  | |

  | \% FORCE_X, FORCE_Y, FORCE_Z, THRUST, |

  | |

  | \% TORQUE, FREE_SURFACE, TOTAL_HEAT, |

  | |

  | \% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, |

  | |

  | \% INVERSE_DESIGN_HEATFLUX) |

  | |

  | OBJECTIVE_FUNCTION= DRAG |

  | |

  | \% |

  | |

  | \% Convective numerical method (JST, LAX-FRIEDRICH, ROE) |

  | |

  | CONV_NUM_METHOD_ADJFLOW= JST |

  | |

  | \% |

  | |

  | \% Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint |

  | flow equations. |

  | |

  | \% Required for 2nd order upwind schemes (NO, YES) |

  | |

  | MUSCL_ADJFLOW= YES |

  | |

  | \% |

  | |

  | \% Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, |

  | VAN_ALBADA_EDGE, |

  | |

  | \% SHARP_EDGES, WALL_DISTANCE) |

  | |

  | SLOPE_LIMITER_ADJFLOW= NONE |

  | |

  | \% |

  | |

  | \% Coefficient for the sharp edges limiter |

  | |

  | ADJ_SHARP_LIMITER_COEFF= 3.0 |

  | |

  | \% |

  | |

  | \% 2nd, and 4th order artificial dissipation coefficients |

  | |

  | ADJ_JST_SENSOR_COEFF= ( 0.0, 0.01 ) |

  | |

  | \% |

  | |

  | \% Reduction factor of the CFL coefficient in the adjoint problem |

  | |

  | CFL_REDUCTION_ADJFLOW= 0.75 |

  | |

  | \% |

  | |

  | \% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) |

  | |

  | TIME_DISCRE_ADJFLOW= EULER_IMPLICIT |

  | |

  | \% |

  | |

  | \% Adjoint frozen viscosity (NO, YES) |

  | |

  | FROZEN_VISC_CONT= YES |

  | |

  | \% --------------------------- CONVERGENCE |

  | PARAMETERS --------------------------% |

  | |

  | \% |

  | |

  | \% Convergence criteria (CAUCHY, RESIDUAL) |

  | |

  | \% |

  | |

  | CONV_CRITERIA= RESIDUAL |

  | |

  | \% |

  | |

  | \% Residual reduction (order of magnitude with respect to the initial |

  | value) |

  | |

  | RESIDUAL_REDUCTION= 8 |

  | |

  | \% |

  | |

  | \% Min value of the residual (log10 of the residual) |

  | |

  | RESIDUAL_MINVAL= -8 |

  | |

  | \% |

  | |

  | \% Start convergence criteria at iteration number |

  | |

  | STARTCONV_ITER= 10 |

  | |

  | \% |

  | |

  | \% Number of elements to apply the criteria |

  | |

  | CAUCHY_ELEMS= 100 |

  | |

  | \% |

  | |

  | \% Epsilon to control the series convergence |

  | |

  | CAUCHY_EPS= 1E-6 |

  | |

  | \% |

  | |

  | \% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, |

  | SENS_GEOMETRY, |

  | |

  | \% SENS_MACH, DELTA_LIFT, DELTA_DRAG) |

  | |

  | CAUCHY_FUNC_FLOW= DRAG |

  | |

  | \% ------------------------- INPUT/OUTPUT |

  | INFORMATION --------------------------% |

  | |

  | \% |

  | |

  | \% Mesh input file |

  | |

  | MESH_FILENAME= swbli.su2 |

  | |

  | \% |

  | |

  | \% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |

  | |

  | MESH_FORMAT= SU2 |

  | |

  | \% |

  | |

  | \% Mesh output file |

  | |

  | MESH_OUT_FILENAME= mesh_out.su2 |

  | |

  | \% |

  | |

  | \% Restart flow input file |

  | |

  | SOLUTION_FLOW_FILENAME= restart_flow.dat |

  | |

  | \% |

  | |

  | \% Restart adjoint input file |

  | |

  | SOLUTION_ADJ_FILENAME= solution_adj.dat |

  | |

  | \% |

  | |

  | \% Output file format (PARAVIEW, TECPLOT, STL) |

  | |

  | OUTPUT_FORMAT= TECPLOT |

  | |

  | \% |

  | |

  | \% Output file convergence history (w/o extension) |

  | |

  | CONV_FILENAME= history |

  | |

  | \% |

  | |

  | \% Output file restart flow |

  | |

  | RESTART_FLOW_FILENAME= restart_flow.dat |

  | |

  | \% |

  | |

  | \% Output file restart adjoint |

  | |

  | RESTART_ADJ_FILENAME= restart_adj.dat |

  | |

  | \% |

  | |

  | \% Output file flow (w/o extension) variables |

  | |

  | VOLUME_FLOW_FILENAME= flow |

  | |

  | \% |

  | |

  | \% Output file adjoint (w/o extension) variables |

  | |

  | VOLUME_ADJ_FILENAME= adjoint |

  | |

  | \% |

  | |

  | \% Output objective function gradient (using continuous adjoint) |

  | |

  | GRAD_OBJFUNC_FILENAME= of_grad.dat |

  | |

  | \% |

  | |

  | \% Output file surface flow coefficient (w/o extension) |

  | |

  | SURFACE_FLOW_FILENAME= surface_flow |

  | |

  | \% |

  | |

  | \% Output file surface adjoint coefficient (w/o extension) |

  | |

  | SURFACE_ADJ_FILENAME= surface_adjoint |

  | |

  | \% |

  | |

  | \% Writing solution file frequency |

  | |

  | WRT_SOL_FREQ= 2000 |

  | |

  | \% |

  | |

  | \% Writing convergence history frequency |

  | |

  | WRT_CON_FREQ= 1 |

  +-----------------------------------------------------------------------+

4.结果分析

4.1 流场特征

图2展示了SU2计算的Ma5激波/边界层干扰流场。可以看到,尖劈头部形成的激波撞击到下侧的平板边界层后向上反射,并与膨胀波相互作用。

图片2.png

图 2 激波/边界层干扰流场马赫数云图

4.2 计算与试验结果对比

图片3.png

图 3 激波/边界层干扰区摩檫力系数分布

图片4.png



(a)SA模型

图片5.png

(b)SST模型

图 4 激波/边界层干扰区流线

图3展示了两种湍流模型计算的摩擦力曲线与试验的对比结果。计算得到的摩檫力系数与试验结果相比,量级相当,趋势也基本保持一致。此外,从图4可以看出,SA模型计算得到的分离区范围跟SST相比明显偏小。

5.结论

采用SU2计算了Ma5激波/边界层干扰流场。计算得到的摩檫力系数与试验结果相比,量级相当,趋势也基本保持一致。SA模型计算得到的分离区范围跟SST相比明显偏小。



免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空