有限元计算边界条件解析:定义与重要性

对有限元计算,无论是ansys、abaqus、msc还是comsol等,归结为一句话就是解微分方程。而解方程要有定解,就一定要引入条件,这些附加条件称为定解条件。定解条件的形式很多,只讨论最常见的两种——初始条件和边界条件。


在说边界条件之前,先谈谈初值问题和边值问题。

微信图片_20170502153053.jpg



初值和边值问题:

对一般的微分方程,求其定解,必须引入条件,这个条件大概分两类---初始条件和边界条件,如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0)=y0, y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题;


而在许多实际问题中,往往要求微分方程的解在在某个给定的区间a≤x≤b的端点满足一定的条件,如y(a)=A,y(b)=B,则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。




三类边界条件:

边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay+By=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0则称为第三类边界条件或洛平(Robin)条件。


总体来说:

第一类边界条件:给出未知函数在边界上的数值;

第二类边界条件:给出未知函数在边界外法线的方向导数;

第三类边界条件:给出未知函数在边界上的函数值和外法向导数的线性组合。



对应于comsol,只有两种边界条件:

Dirichlet boundary(第一类边界条件)—在端点,待求变量的值被指定。

Neumann boundary(第二类边界条件)—待求变量边界外法线的方向导数被指定。



再补充点初始条件:

初始条件,是指过程发生的初始状态,也就是未知函数及其对时间的各阶偏导数在初始时刻t=0的值.在有限元中,好多初始条件要预先给定的。不同的场方程对应不同的初始条件。


总之,为了确定泛定方程的解,就必须提供足够的初始条件和边界条件!

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空