mediappipe手势模型低端设备 RK3568推理 GPU 占用比较高 尝试3568平台NPU 进行推理 一下进行 tflite模型转换 rknn模型
手部坐标 模型 图
准备rknn-tookit2 1.3.0以上环境
进入 t@ubuntu:~/rknn/rknn-toolkit2/examples/tflite$ 目录
参照 mobilenet_v1 demo 转换hands模型
copy mobilenet_v1 demo 重命名 mediapipe_hand
cd /rknn/rknn-toolkit2/examples/tflite/mediapipe_hand$
修改 test.py 加载模型 及输入图片资源
import numpy as npimport cv2from rknn.api import RKNN #import tensorflow.compat.v1 as tf #使用1.0版本的方法#tf.disable_v2_behavior() # def show_outputs(outputs): output = outputs[0][0] output_sorted = sorted(output, reverse=True) top5_str = 'mobilenet_v1\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128]) print('done') # Load model print('--> Loading model') ret = rknn.load_tflite(model='hand_landmark_lite.tflite') #ret = rknn.load_tflite(model='palm_detection_lite.tflite') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./hands.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./hand_1.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (224,224)) img = np.expand_dims(img, 0) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) print('--> outputs:' ,outputs) np.save('./tflite_hands.npy', outputs[0]) show_outputs(outputs) print('done') rknn.release()
注意输入 图的size tensorflow版本 尽量使用最新的
模拟推理结果
数据格式
[array([[ 75.521454, 161.8317 , 0. , 110.37751 , 165.15132 ,
-6.639249, 141.91394 , 159.34198 , -11.618686, 170.13075 ,
151.04291 , -15.768216, 190.0485 , 141.91394 , -19.917747,
131.95508 , 99.58873 , -14.108404, 158.51207 , 63.90277 ,
-18.257935, 174.28029 , 45.644836, -19.917747, 186.72887 ,
31.536432, -20.747652, 112.86723 , 87.97005 , -12.448591,
136.1046 , 48.134556, -15.768216, 151.04291 , 24.067278,
-17.428028, 164.32141 , 7.469155, -17.428028, 96.26911 ,
85.48033 , -9.128967, 109.54761 , 47.30465 , -12.448591,
120.33639 , 25.727089, -13.278498, 130.29526 , 10.788779,
-13.278498, 81.330795, 87.97005 , -7.469155, 83.82052 ,
55.60371 , -9.128967, 90.45976 , 38.175682, -9.958874,
97.92892 , 24.897182, -9.958874]], dtype=float32), array([[0.9889264]], dtype=float32), array([[0.4299424]], dtype=float32), array([[-0.03374431, 0.06308718, 0.01027001, 0.00293429, 0.0572186 ,
0.02689764, 0.02200716, 0.04645955, 0.01369334, 0.04059098,
0.04743765, 0.01075905, 0.06210908, 0.03863478, -0.00978096,
0.01907287, -0.0009781 , -0.0009781 , 0.03521145, -0.01075905,
-0.01075905, 0.04010193, -0.0224962 , 0.00489048, 0.05672956,
-0.03618954, 0.02738668, 0.00342334, -0.00244524, -0.00391238,
0.01516049, -0.02689764, -0.00146714, 0.02640859, -0.05183908,
0.02151811, 0.04059098, -0.06113099, 0.00537953, -0.00391238,
-0.00244524, 0.0009781 , -0.00635762, -0.02200716, -0.00146714,
0.00244524, -0.04401431, 0.00489048, 0.01369334, -0.0581967 ,
0.02396335, -0.01467144, -0.00880286, 0.00586857, -0.02836478,
-0.01956192, 0.00244524, -0.02151811, -0.03716764, -0.00048905,
-0.01173715, -0.04499241, -0.01907287]], dtype=float32)]
21个关键点 hands检测置信度 左右手分类 ..
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删