了解机器学习概念之后,无涯教程现在可以将重点转移到深度学习概念上,深度学习是机器学习的一个分支,被认为是近几十年来研究人员迈出的关键一步。深度学习实现的示例包括图像识别和语音识别等应用。
以下是深度神经网络的两种重要类型-
在本章中,将重点介绍CNN,即卷积神经网络。
卷积神经网络旨在通过多层数组处理数据,这种类型的神经网络用于图像识别或面部识别等应用中, CNN与任何其他普通神经网络之间的主要区别在于,CNN将输入作为二维数组,直接在图像上进行操作,而不是像其他神经网络关注的是特征提取。
CNN利用输入数据中存在的空间相关性,神经网络的每个并发层都连接一些输入神经元,该特定区域称为局部感受野,局部感受野集中在隐藏的神经元上,隐藏的神经元在提到的字段内处理输入数据,但未实现特定边界之外的更改。
如果观察到以上表示,则每个连接都将学习隐藏神经元的权重,并具有从一层到另一层的运动的关联连接,在这里,单个神经元会执行转换,这个过程称为"卷积"。
从输入层到隐藏要素图的连接映射定义为"共享权重",其中包含的偏差称为"共享偏差"。
CNN或卷积神经网络使用池化层,池化层是在CNN声明后立即定位的层,它将来自用户的输入作为来自卷积网络的特征图,并准备一个压缩的特征图。合并层有助于创建具有先前层神经元的层。
在本部分中,无涯教程将了解CNN的TensorFlow实现。需要执行整个网络并具有适当尺寸的步骤如下所示-
步骤1 - 包括计算CNN模型所需的TensorFlow必要模块和数据集模块。
登录后复制
import tensorflow as tf
import numpy as np
from tensorflow.examples.Learnfk.mnist import input_data
步骤2 - 声明一个名为 run_cnn()的函数,该函数包含各种参数和带有数据占位符声明的优化变量,这些优化变量将声明训练模式。
登录后复制
def run_cnn():
mnist=input_data.read_data_sets("MNIST_data/", one_hot=True)
learning_rate=0.0001
epochs=10
batch_size=50
步骤3 - 在这一步中,将使用输入参数- 28 x 28= 784像素声明训练数据占位符,这是从 mnist.train提取的扁平化图像数据。
可以根据需要重塑张量,第一个值(-1)告诉函数根据传递给它的数据量动态调整该维度,中间的两个尺寸设置为图像尺寸(即28 x 28)。
登录后复制
x=tf.placeholder(tf.float32, [None, 784])
x_shaped=tf.reshape(x, [-1, 28, 28, 1])
y=tf.placeholder(tf.float32, [None, 10])
步骤4 - 现在,重要的是创建一些卷积层-
登录后复制
layer1=create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name='layer1')
layer2=create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name='layer2')
步骤5 - 让无涯教程输出,在将步长2的两层合并为28 x 28的尺寸之后,将其放宽为14 x 14或最小7 x 7 的x ,y坐标,但具有64个输出通道。要创建完全连接的密集层,新形状需要为[-1,7 x 7 x 64],可以为此层设置一些权重和偏差值,然后使用ReLU激活。
登录后复制
flattened = tf.reshape(layer2, [-1, 7 * 7 * 64])
wd1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1000], stddev = 0.03), name = 'wd1')
bd1 = tf.Variable(tf.truncated_normal([1000], stddev = 0.01), name = 'bd1')
dense_layer1 = tf.matmul(flattened, wd1) + bd1
dense_layer1 = tf.nn.relu(dense_layer1)
步骤6 - 另一层具有特定softmax激活并带有所需优化器的层定义了准确性判断,从而进行了初始化运算符的设置。
登录后复制
wd2 = tf.Variable(tf.truncated_normal([1000, 10], stddev = 0.03), name = 'wd2')
bd2 = tf.Variable(tf.truncated_normal([10], stddev = 0.01), name = 'bd2')
dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = dense_layer2, labels = y))
optimiser = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init_op = tf.global_variables_initializer()
步骤7 - 应该设置记录变量,这将汇总汇总以存储数据的准确性。
登录后复制
tf.summary.scalar('accuracy', accuracy)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('E:\TensorFlowProject')
with tf.Session() as sess:
sess.run(init_op)
total_batch = int(len(mnist.train.labels)/batch_size)
for epoch in range(epochs):
avg_cost = 0
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size = batch_size)
_, c = sess.run([optimiser, cross_entropy], feed_dict = {
x:batch_x, y: batch_y})
avg_cost += c/total_batch
test_acc = sess.run(accuracy, feed_dict = {x: mnist.test.images, y:
mnist.test.labels})
summary = sess.run(merged, feed_dict = {x: mnist.test.images, y:
mnist.test.labels})
writer.add_summary(summary, epoch)
print("\nTraining complete!")
writer.add_graph(sess.graph)
print(sess.run(accuracy, feed_dict = {x: mnist.test.images, y:
mnist.test.labels}))
def create_new_conv_layer(
input_data, num_input_channels, num_filters,filter_shape, pool_shape, name):
conv_filt_shape = [
filter_shape[0], filter_shape[1], num_input_channels, num_filters]
weights = tf.Variable(
tf.truncated_normal(conv_filt_shape, stddev = 0.03), name = name+'_W')
bias = tf.Variable(tf.truncated_normal([num_filters]), name = name+'_b')
#Out layer defines the output
out_layer =
tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding = 'SAME')
out_layer += bias
out_layer = tf.nn.relu(out_layer)
ksize = [1, pool_shape[0], pool_shape[1], 1]
strides = [1, 2, 2, 1]
out_layer = tf.nn.max_pool(
out_layer, ksize = ksize, strides = strides, padding = 'SAME')
return out_layer
if __name__ == "__main__":
run_cnn()
以下是上述代码生成的输出-
登录后复制
See @{tf.nn.softmax_cross_entropy_with_logits_v2}.
2018-09-19 17:22:58.802268: I
T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2
2018-09-19 17:25:41.522845: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 1003520000 exceeds 10% of system memory.
2018-09-19 17:25:44.630941: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 501760000 exceeds 10% of system memory.
Epoch: 1 cost=0.676 test accuracy: 0.940
2018-09-19 17:26:51.987554: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 1003520000 exceeds 10% of system memory.
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删