TensorFlow 线性回归

实验原理:

线性回归是用来度量变量间关系的统计技术。该算法的实现并不复杂,但可以适用于很多情形。正是因为这些原因,以线性回归作为开始学习TensorFlow的开始。

不管在两个变量(简单回归)或多个变量(多元回归)情形下,线性回归都是对一个依赖变量,多个独立变量xi,一个随机值b间的关系建模。利用TensorFlow实现一个简单的线性回归模型:分析一些代码基础及说明如何在学习过程中调用各种重要组件,比如cost function或梯度下降算法


运行代码:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()   #保证placer
import numpy as np
import matplotlib.pyplot as plt
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
#设置训练参数
learning_rate=0.01
training_epochs=1000
display_step=50
# 训练数据
train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,
3.1])
train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94
,1.3])
n_samples=train_X.shape[0]
#构造计算图
X=tf.placeholder("float")
Y=tf.placeholder("float")

#设置模型的初始权重
W=tf.Variable(np.random.randn(),name="weight")
b=tf.Variable(np.random.randn(),name='bias')
#构造线性回归模型
pred=tf.add(tf.multiply(X,W),b)
#损失函数,即均方差
cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
#使用梯度下降法求最小值,即最优解
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#初始化全部变量
init=tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)

#调用会话对象sess的run方法,运行计算图,即开始训练模型

for epoch in range(training_epochs):
for(x,y) in zip(train_X,train_Y):
sess.run(optimizer,feed_dict={X:x,Y:y})

#Display logs per epoch step  
if (epoch+1) % display_step==0:
c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
#训练模型的代价函数。
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Train cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b))

plt.plot(train_X,train_Y,'ro',label='Original data')
plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
plt.legend()
plt.show()1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.
32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.

运行结果:

02.TensorFlow 线性回归_初始化

生成的模型:

02.TensorFlow 线性回归_数据_02



免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空