本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。
波士顿房价数据集可从 http://lib.stat.cmu.edu/datasets/boston处获取。
本小节直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。
从下图中可以看到,简单线性回归器试图拟合给定数据集的线性线:
在下图中可以看到,随着模型不断学习数据,损失函数不断下降:
下图是简单线性回归器的 TensorBoard 图:
该图有两个名称范围节点 Variable 和 Variable_1,它们分别是表示偏置和权重的高级节点。以梯度命名的节点也是一个高级节点,展开节点,可以看到它需要 7 个输入并使用 GradientDescentOptimizer 计算梯度,对权重和偏置进行更新:
本节进行了简单的线性回归,但是如何定义模型的性能呢?
有多种方法可以做到这一点。统计上来说,可以计算 R2 或将数据分为训练集和交叉验证集,并检查验证集的准确性(损失项)。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删