本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价。第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务。
对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。
下面是如何使用 MLP 进行函数逼近的示例:
加载数据集并创建 Pandas 数据帧来分析数据:
了解一些关于数据的细节:
下表很好地描述了数据:
找到输入的不同特征与输出之间的关联:
以下是上述代码的输出:
从前面的代码中,可以看到三个参数 RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用 MinMaxScaler 来规范数据集。
需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:
定义常量和超参数:
创建一个单隐藏层的多层感知机模型:
声明训练数据的占位符并定义损失和优化器:
执行计算图:
在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:
在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。
下面是 Keras 中以 TensorFlow 作为后端的代码:
前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删