1.Bullet飞行120m处温度确定
根据之前的研究结果表明,Bullet出膛时的温度为81摄氏度左右;Bullet初速为960m/s,Bullet在120m处的余速为640m/s,其平均速度为800m/s。在模拟Bullet飞行到120m处的温度时,设定气流流向Bullet的速度为平均速度800m/s。采用FLUENT数值仿真软件进行模拟。
2.1Bullet模型建立
根据Bullet参数:该Bullet为30×165 mm高爆燃烧弹,弹重837g,弹头重389g,装药49g,初速960m/s,引信延时0.15ms,并能在7.5-14.5s后自毁。其实体模型如图2.1所示。
图2.1 Bullet实体模型
考虑到Bullet发射出去后只有弹头在空气中飞行,根据已知数据以及实体模型图片使用图片测算法,运用SolidWorks软件建立弹壳三维实体模型以及内部装药模型,如图2.2所示。
图2.2 弹壳及装药模型
将弹头壳体与装药装配到位后需要在其外部建立外流场区域,即外部空气域,使用workbench里面的建模软件在弹头外部生成外流场。如图2.3所示。
图2.3 弹头外流场区域建立
2.2模型前处理
将建好外流场区域的弹头及流体区域模型导入mesh进行前处理。弹头壳体以及装药网格划分如图2.4所示。
图2.4 网格划分
将弹头飞行方向所指空气域对应的面设置为空气流入边界,其他面设置为流出边界。如图2.5所示。
图2.5 空气域边界设定
在模拟弹头与外部空气的热交换时,需要建立弹头壳体外部与空气交界面的耦合换热面,此外还需要考虑弹头壳体与内部装药的耦合换热面。耦合换热面的建立如图2.6所示。
图2.6 耦合传热面建立
2.3仿真模型设置
将处理好的前处理模型导入FLUENT进行数值仿真相关参数设置,采用基于压力求解(Pressure-Based)算法,该方法既适用于可压缩流体,也适用于不可压缩流体的计算。采用瞬态/非稳态(Transient)计算方法,设定大气温度为20摄氏度,一个标准大气压下进行模拟。
选择计算模型时,需要打开能量方程,进行耦合传热计算。流动模型选择“Viscous”(黏性)“k-epsilon(2qn)”中的“Realizable”模型,勾选“Scalable Wall Function”。空气使用“ideal-gas”理想气体状态方程,设置弹体材料为铜,内部装药材料为B炸药。对于B炸药主要设置其传热系数以及比热容,B炸药主要参数设置如图2.7所示。
图2.7 B炸药主要参数设置
如图2.7所示,主要设置了密度1717kg/m³,定压比热为1760J/kg-k,热传导系数为0.5w/m-k。物理模型相关设置如图2.8所示。
图2.8 湍流模型设置
弹头与空气域之间耦合传热面interface的建立以及弹头壳体与内部装药耦合传热面interface的建立如图2.9所示。
图2.9 耦合传热面interface建立
上述设置完成后,选用SIMPLE Method进行计算,在进行初始化时,设定空气域初始温度为20摄氏度,弹头壳体以及装药温度为81摄氏度。在进行时间步长设置时,由于设定气流速度为Bullet平均速度800m/s,Bullet飞行120m需要的时间为150ms,设定计算总时间为150ms,计算完成后即可得到120m处弹头及外部空气温度分布。
2.4数值仿真结果
初始时刻,模型中心截面的温度分布如图2.9所示。如图中所示,弹头初始温度为81摄氏度,外部空气域为20摄氏度。
图2.9 初始时刻温度分布
计算完成后,弹体周围温度场分布如图2.10所示。
图2.10 温度分布计算结果
由图2.10所示,弹头整体温度基本没变,弹头周围空气温度有所提高,约为50摄氏度。弹头壳体表面平均温度为79.1摄氏度,弹头壳体平均温度为79.5摄氏度,装药温度为81摄氏度。弹头壳体表面温度以及弹头壳体平均温度计算结果如图2.11所示。
图2.11 温度计算结果
弹头周围气流速度场分布如图2.12所示。
图2.12 弹头周围气流速度场分布
由上述仿真结果可知,120m处,弹头表面温度约为79.1摄氏度,弹头壳体整体平均温度约为79.5摄氏度,装药温度依旧为81摄氏度。在后续侵彻油箱计算过程中,可分别赋予弹头壳体与装药相应的不同初始温度。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删