PyTorch 是由 Torch7 团队开源的,这也是Facebook 的 AI 研究团队发布了一个 Python 工具包,据该项目官网介绍,是一个 Python 优先的深度学习框架,能够在强大的 GPU 加速基础上实现张量和动态神经网络。
目前除了 Facebook 之外,也有大量的机构正在使用 PyTorch
PyTorch 的前身是 Torch,其是一个十分老牌、对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用,但由于其语言采用 Lua,导致在国内一直很小众,如今使用 Python 语言强势归来,快速的赢得了大量使用者。
PyTorch 提供了两种高层面的功能:
以便使用强大的 GPU 加速;将其作为一个能提供最大灵活性和速度的深度学习研究平台PyTorch 作为一个 Python 优先的动态图框架,有下面几个特点
2.Python 优先
PyTorch 不是简单地在整体 C++ 框架上绑定 Python,他深入构建在 Python 之上,你可以像使用 numpy/scipy/scikit-learn 那样轻松地使用 PyTorch,也可以用你喜欢的库和包在 PyTorch 中编写新的神经网络层,尽量让你不用重新发明轮子。
3.命令式体验
PyTorch 的设计思路是线性、直观且易于使用。当你需要执行一行代码时,它会忠实执行。PyTorch 没有异步的世界观。当你打开调试器,或接收到错误代码和 stack trace 时,你会发现理解这些信息是非常轻松的。Stack-trace 点将会直接指向代码定义的确切位置。我们不希望你在 debug 时会因为错误的指向或异步和不透明的引擎而浪费时间。
4.快速精益
PyTorch 具有轻巧的框架,集成了各种加速库,如 Intel MKL、英伟达的 CuDNN 和 NCCL 来优化速度。在其核心,它的 CPU 和 GPU Tensor 与神经网络后端(TH、THC、THNN、THCUNN)被编写成了独立的库,带有 C99 API。
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
Tensorflow 的特征
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删