LS-SVM数据分类算法的MATLAB仿真测试

1.算法仿真效果

matlab2022a仿真结果如下:
基于LS-SVM的数据分类matlab仿真测试_拟合基于LS-SVM的数据分类matlab仿真测试_3c_02



2.算法涉及理论知识概要

LSSVM(Least Square SVM)是将Kernel应用到ridge regression中的一种方法,它通过将所有样本用最小二乘误差进行拟合(这个拟合是在kernel变换过的高维空间),但是LSSVM的缺陷是计算复杂度大概是样本数的三次方量级,计算量非常大。为了解决这个问题于是提出了SVR(支持向量回归),SVR通过支持向量减小了LSSVM的计算复杂度,并且具备LSSVM的能够利用kernel在高纬度拟合样本的能力。

基于LS-SVM的数据分类matlab仿真测试_拟合_03

LSSVM的推导过程:

基于LS-SVM的数据分类matlab仿真测试_3c_04

登录后复制

在SVM推导过程中讲到过,合法的Kernel必须是z_n,z_m组成Kernel的矩阵必须是半正定的,因此上面这个求逆过程必定有解。


LSSVM的特性

1) 同样是对原始对偶问题进行求解,但是通过求解一个线性方程组(优化目标中的线性约束导致的)来代替SVM中的QP问题(简化求解过程),对于高维输入空间中的分类以及回归任务同样适用;

2) 实质上是求解线性矩阵方程的过程,与高斯过程(Gaussian processes),正则化网络(regularization networks)和费雪判别分析(Fisher discriminant analysis)的核版本相结合;

3) 使用了稀疏近似(用来克服使用该算法时的弊端)与稳健回归(稳健统计);

4) 使用了贝叶斯推断(Bayesian inference);

5) 可以拓展到非监督学习中:核主成分分析(kernel PCA)或密度聚类;

6) 可以拓展到递归神经网络中。



3.MATLAB核心程序

登录后复制

% train model
if isempty(model.gam) && isempty(model.kernel.pars)
    error('Please tune model first with ''tunelssvm'' to obtain tuning parameters');
end
model = trainlssvm(model);
 
s = smootherlssvm(model);
Yhat = simlssvm(model,x);
 
% bias: double smoothing with fourt order kernel RBF4
modelb = initlssvm(x,y,'f',[],[],'RBF4_kernel','o');
modelb = tunelssvm(modelb,'simplex','crossvalidatelssvm',{10,'mse'});
modelb = trainlssvm(modelb);
 
biascorr = (s-eye(size(x,1)))*simlssvm(modelb,x);
 
% construct approximate 100(1-alpha)% confidence interval
%1) estimate variance nonparametrically
sigma2 = varest(model);
 
%2) calculate var-cov matrix
s = s*diag(sigma2)*s';
 
%2b) find standardized absolute maxbias 
delta = max(abs(biascorr./sqrt(diag(s))));
 
%3) pointwise or simultaneous?
if conftype(1)=='s'
    z = tbform(model,alpha) + delta;
elseif conftype(1)=='p'
    z = norminv(alpha/2);
    Yhat = Yhat - biascorr;
else
    error('Wrong type of confidence interval. Please choose ''pointwise'' or ''simultaneous''');
end
    
ci = [Yhat+z*sqrt(diag(s)) Yhat-z*sqrt(diag(s))];
 
function [var,modele] = varest(model)
 
% if preprocessed data, construct original data
if model.preprocess(1)=='p'
    [x,y] = postlssvm(model,model.xtrain,model.ytrain);
else
    x = model.xtrain; y = model.ytrain;
end
 
model = trainlssvm(model);
 
Yh = simlssvm(model,x);
 
% Squared normalized residuals
e2 = (y-Yh).^2;
 
% Make variance model
if model.nb_data <= 200
    costfun = 'leaveoneoutlssvm'; costargs = {'mae'};
else
    costfun = 'crossvalidatelssvm'; costargs = {10,'mae'};
end
modele = initlssvm(x,e2,'f',[],[],'RBF_kernel');
modele = tunelssvm(modele,'simplex',costfun,costargs);
modele = trainlssvm(modele);
 
% variance model
var = max(simlssvm(modele,x),0);
% make estimate of var unbiased in homoscedastic case if regression
% estimate is unbiased
L = smootherlssvm(model);
S = smootherlssvm(modele);
var = var./(ones(size(x,1),1)+S*diag(L*L'-L-L'));






免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空