Matlab向量操作与运用

1、             向量的创建

1)直接输入:

行向量:a=[1,2,3,4,5]

列向量:a=[1;2;3;4;5]

      2)用“:”生成向量

             a=J:K 生成的行向量是a=[J,J+1,…,K]

             a=J:D:K 生成行向量a=[J,J+D,…,J+m*D],m=fix((K-J)/D)

      3)函数linspace 用来生成数据按等差形式排列的行向量

             x=linspace(X1,X2):在X1和X2间生成100个线性分布的数据,相邻的两个数据的差保持不变。构成等差数列。

             x=linspace(X1,X2,n): 在X1和X2间生成n个线性分布的数据,相邻的两个数据的差保持不变。构成等差数列。

      4)函数logspace用来生成等比形式排列的行向量

             X=logspace(x1,x2) 在x1和x2之间生成50个对数等分数据的行向量。构成等比数列,数列的第一项x(1)=10x1,x(50)=10x2

X=logspace(x1,x2,n) 在x1和x2之间生成n个对数等分数据的行向量。构成等比数列,数列的第一项x(1)=10x1,x(n)=10x2

注:向量的的转置:x=(0,5)’

2、             矩阵的创建

1)直接输入:将数据括在[]中,同一行的元素用空格或逗号隔开,每一行可以用回车或是分号结束

如:a=[1,2,3;3,4,5],运行后:

a =

    1     2     3

    3     4     5

2)函数eye,生成单位矩阵

eye(n) :生成n*n阶单位E

eye(m,n):生成m*n的矩阵E,对角线元素为1,其他为0

eye(size(A)):生成一个矩阵A大小相同的单位矩阵

eye(m,n,classname):对角线上生成的元素是1,数据类型用classname指定。其数据类型可以是:duoble、single、int8、uint8、int16、uint16、int32、uint32。

     

3)函数ones  用ones生成全1的矩阵

ones(n) : 生成n*n的全1矩阵

ones(m,n) : 生成m*n的全1矩阵

ones(size(A)) : 生成与矩阵A大小相同的全1矩阵

ones(m,n,p,…)生成m*n*p*….的全1的多维矩阵

ones(m,n,…,classname)制定数据类型为classname

4)函数zeros 函数zeros生成全0矩阵

zeros(n):生成n*n的全0矩阵

zeros(m,n:)生成m*n的全0矩阵

zeros(size(A)): 生成与矩阵A大小相同的全0矩阵

zeros (m,n,p,…)生成m*n*p*….的全0的多维矩阵

zeros (m,n,…,classname)指定数据类型为classname

5)函数rand 函数rand用来生成[0,1]之间均匀分布的随机函数,其调用格式是:

Y=rand:生成一个随机数

Y=rand(n):生成n*n的随机矩阵

Y=rand(m,n):生成m*n的随机矩阵

Y=rand(size(A)):生成与矩阵A大小相同的随机矩阵

Y=rand(m,n,p,…):生成m*n*p*…的随机数多维数组

6)函数randn 函数rand用来生成服从正态分布的随机函数,其调用格式是:

Y=randn:生成一个服从标准正态分布的随机数

Y=randn(n):生成n*n的服从标准正态分布的随机矩阵

Y=randn(m,n):生成m*n的服从标准正态分布的随机矩阵

Y=randn(size(A)):生成与矩阵A大小相同的服从标准正态分布的随机矩阵

Y=randn(m,n,p,…):生成m*n*p*…的服从标准正态分布的随机数多维数组

3、             矩阵元素的提取与替换

1)  单个元素的提取

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a(1,2)

b =

    2      

2)  提取矩阵中某一行的元素,

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a(1,:)

b =

    1     2     3

3)  提取矩阵中某一列:

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a(:,1)

b =

    1

    3

4)  提取矩阵中的多行元素

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a([1,2],:)

b =

    1     2     3

    3     4     5

5)  提取矩阵中的多列元素

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a(:,[1,3])

b =

    1     3

    3     5

6)  提取矩阵中多行多列交叉点上的元素

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入b=a([1,2],[1,3])

b =

    1     3

    3     5

7)  单个元素的替换:

如:a=[1,2,3;3,4,5],运行后:

a =

   1     2     3

   3     4     5

输入:a(2,3)=-1

a =

    1     2     3

    3     4    -1

4、             矩阵元素的重排和复制排列

1)  矩阵元素的重排

B=reshape(A,m,n):返回的是一个m*n矩阵B,矩阵B的元素就是矩阵A的元素,若矩阵A的元素不是m*n个则提示错误。

B=reshape(A,m,n,p):返回的是一个多维的数组B,数组B中的元素个数和矩阵A中的元素个数相等

B=reshape(A,…,[],…):可以默认其中的一个维数

B=reshape(A,siz) : 由向量siz指定数组B的维数,要求siz的各元素之积等于矩阵A的元素个数

2)  矩阵的复制排列  函数是repmat

B=repmat(A,n):返回B是一个n*n块大小的矩阵,每一块矩阵都是A

B=repmat(A,m,n):返回值是由m*n个块组成的大矩阵,每一个块都是矩阵A。

B=repmat(A,[m,n,p,…]):返回值B是一个多维数组形式的块,每一个块都是矩阵A

5、             矩阵的翻转和旋转

1)矩阵的左右翻转 左右翻转函数是fliplr,调用格式:

B=fliplr(A):将矩阵A左右翻转成矩阵B。

输入:A=[1,2,3;3,4,2]

A =

    1     2     3

    3     4     2

输入:B=fliplr(A)

B =

    3     2     1

2             4     3

2)矩阵上下翻转 函数:flipud,调用格式:

B=flipud(A):把矩阵A上下翻转成矩阵B

3)  多维数组翻转 函数:flipdim,调用格式:

B=flipdim(A,dim):把矩阵或多维数组A沿指定维数翻转成B

4)  矩阵的旋转  函数:rot90,调用格式:

B=rot90(A):矩阵B是矩阵A沿逆时针方向旋转90得到的

B=rot90(A,k):矩阵B是矩阵A沿逆时针方向旋转k*90得到的(要想顺时针旋转,k取-1)

6、             矩阵的生成与提取函数

1)  对角线函数 对角线函数diag既可以用来生成矩阵,又可以来提取矩阵的对角线元素,其调用格式:

a)         A=diag(v,k):当v是有n个元素的向量,返回矩阵A是行列数为n+|k|的方阵。向量v的元素位于A的第k条对角线上。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下。

b)         A=diag(v):将向量v的元素放在方阵A的主对角线上,等同于A=diag(v,k)中k=0的情况。

c)         v=diag(A,k):提取矩阵A的第k条对角线上的元素于列向量v中。

d)         v=diag(A):提取矩阵A的主对角线元素于v中,这种调用等同于v=diag(A,k)中k=0的情况。

2)  下三角阵的提取  用函数tril,调用格式:

a)         L=tril(A): 提取矩阵A的下三角部分

b)         L=tril(A,k):提取矩阵A的第k条对角线以下部分。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下。

3)  上三角阵的提取  函数triu,调用格式:

a)         U=triu(A): 提取矩阵A的上三角部分元素

b)         U=triu(A,k): 提取矩阵A的第k条对角线以上的元素。K=0 对应主对角线,k>0对应主对角线以上,k<0对应主对角线以下

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空