平面应力与平面问题:ANSYS实现方法与技巧

今天,我们继续研究下一节——应力·拉(压)杆内的应力

我们知道,应力是判断结构性能的一个重要指标,在结构设计中,应力的正确计算是极其重要的。下面,我们通过例题2-3,来研究该题的材料力学解法和ANSYS解法。

浅谈平面应力和平面问题及其ANSYS实现的图1



一.材料力学解法:


我们首先对该结构进行受力分析,假想用一直径平面将该圆环切开,受力图如下:
 


浅谈平面应力和平面问题及其ANSYS实现的图2


  根据平衡方程,半环上内压力的合力F  R=2*F  N。


浅谈平面应力和平面问题及其ANSYS实现的图3

所以,

FR=pbd/2

此时,我们引入一个假设:当圆环的壁厚δ与内直径d有如下关系:δ/d≤1/20,可以认为径向截面上的正应力是均匀分布的。该假设的误差,笔者将在文章最后给出。

依据上述假设,可得径向截面上的正应力:

σ=FN/A=pbd/2bδ=40MPa



二.ANSYS解法:

首先,我们引入两个概念:平面应力和平面应变



1.平面应力:

如下图,对于很薄的等厚薄板,只在边上受有平行于板面且不沿厚度变化的面力或约束;同时,体力也平行于板面且不沿厚度变化。设薄板的中面在xy平面内,z轴垂直于中面,则在整个薄板上,都有:

σz=0,τzx=0,τzy=0


根据切应力互等定理:
 

τxz=0,τyz=0


  此时,只剩下平行于xy面的三个应力分量:
 

σx,σy,τxy=τyx


  又因为板很薄,可以认为这三个应力分量是不沿板厚变化的,它们只是x,y的函数。
 


  这就是平面应力问题。
 

浅谈平面应力和平面问题及其ANSYS实现的图4



2.平面应变:

如下图,对于很长的柱形体,横截面不沿长度变化。在柱面上受有平行于横截面且不沿长度不变化的面力或约束,同时,体力也平行于横截面且不沿长度变化。

假设该柱体无线长,以任意横截面为xy面,任意纵线为z轴,则所有一切应力分量、应变分量、位移分量都不沿z方向变化,只是x和y的函数。由于对称,所有各点都只会沿x和y方向移动,不会有z方向的位移,所以w=0,εz=0。


  由对称条件,可知
 


  τ  zx=0,τ  zy=0
 


  根据切应力互等定理:
 


  τ  xz=0,τ  yz=0
 


  由胡克定律:
 


  γ  zx=γ  zy=0
 


  由于z方向的伸缩被阻止,所以σ  z一般并不等于0。
 


  此时,只剩下平行于xy面的三个应变分量:
 


  ε  x,ε  y,γ  xy


  这就是平面应变问题。
 


浅谈平面应力和平面问题及其ANSYS实现的图5


说明:
 

1.平面应力和平面应变问题的区别:平面应力: εz≠0 ,轴向远小于横向;平面应变: σz≠0,横向远小于轴向。

2. 平面问题的求解体系:8 个未知数,必须建立8 个相互独立的方程才能得以求解。

3. 平面问题方程来源:

a. 平衡微分方程:建立应力和力之间的关系,总共3个,力矩平衡方程推出切应力互等,所以还剩x,y方向力的平衡方程;

b. 几何方程:建立应变与位移之间的关系,总共3个;

c. 物理方程:建立应力与应变之间的关系,总共3个。

以上只是对平面问题简单的论述,若读者想深入学习,可参阅徐芝纶教授编著的《弹性力学》第5版。

使用ANSYS求解该问题时,我们从以下几个方面入手:

1.确定分析类型:根据例题所示结构,确定分析类型为静力学分析;

2.通过对例题结构进行分析,可知该结构符合平面应变问题;计算时可选择任意横截面,使用平面单元进行计算;

3.该横截面同时关于x轴和y轴对称,计算时可使用四分之一结构计算。



Step1:在SCDM中创建平面模型。

由于我们使用平面应变模型计算,所以建模时必须要将横截面建立在xy平面上。根据题目中给的几何尺寸,在xy平面上建立一个四分之一的圆环面。草绘完成后,点击顶部的Pull或者底部Return to 3D mode,然后按ESC键,将草绘转化成面。建立完成以后,点击菜单栏Workbench→ANSYS transfer→2020R1进入Workbench。

浅谈平面应力和平面问题及其ANSYS实现的图6



Step2:设置分析类型(2D)。

在Project Schematic中的空白处点击右键,选择Properties,打开Properties of Project Schematic。单击项目中的A2(Geometry)栏,在Propertiesof Project Schematic A2: Geometry中将AnalysisType切换为2D。(若Analysis Type为3D,则导入平面几何后软件将使用壳单元计算。)

浅谈平面应力和平面问题及其ANSYS实现的图7



Step3:创建分析流程。

将StaticStructural拖入Project Schematic,并与刚才导入的几何建立联系。双击Model进入Mechanical。

浅谈平面应力和平面问题及其ANSYS实现的图8



Step4:几何设置。

在结构树中点击Geometry,将Details of Geometry中的2D Behavior切换成Plane Strain(平面应变)。

浅谈平面应力和平面问题及其ANSYS实现的图9



Step5:网格划分。

为了得到更加精确的结果,笔者在圆环的厚度方向布置了5个网格,将网格尺寸设置为1mm。为了使网格全部为四边形,笔者在网格划分时设置了Face Meshing。

浅谈平面应力和平面问题及其ANSYS实现的图10



Step5:载荷及约束设置。

1.载荷:薄壁圆环内壁施加2MPa的压力。(施加Pressure时,正值代表压缩,负值代表拉伸)

2.约束:由于我们使用的是四分之一模型,所以我们在对称边界上使用Frictionless Support。为了让读者看着清楚,笔者在每个对称边界上都施加了Frictionless Support,这样有个好处,就是能在后处理的时候查看每个对称边界上的支反力。简单一点的话,可以选中两个对称边界,施加一个Frictionless Support也可以。

浅谈平面应力和平面问题及其ANSYS实现的图11



Step6:求解及后处理。

题目让我们求圆环径向截面(即对称边界)上的拉应力,后处理时,我们可以选择单独输出对称边界上的结果。我们单击Solution,在Results中选择Stress→Normal Stress,并在Details of Normal Stress将Geometry选为对称边界的一个边,将Orientation设置为Y轴。然后提取结果。

浅谈平面应力和平面问题及其ANSYS实现的图12

浅谈平面应力和平面问题及其ANSYS实现的图13

浅谈平面应力和平面问题及其ANSYS实现的图14



通过计算结果发现:

1.圆环径向横截面上的正应力最大值为41.024MPa,最小值为39.024MPa,平均值为40.024MPa,与材料力学计算结果基本相同。

2.圆环径向截面上的正应力沿壁厚不是均匀分布的,而是呈线性分布。但最大值和最小值相差很小,可以认为是均匀分布。

3.求解时将三维空间问题转化为二维平面问题,用二维坐标系研究三维问题,在保证计算结果的前提下,大大缩短了计算时间,提高了计算效率。

至此,该例题求解完毕。

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空