当前位置:服务支持 >  软件文章 >  我与有限元之有限元基础最终版完整讲述

我与有限元之有限元基础最终版完整讲述

阅读数 6
点赞 0
article_banner

我与有限元_之有限元基础(最终版)
CH1_什么是有限元 by caoer3
有限元是一种求解问题的数值方法,求解什么问题呢?--求解PDE(偏微分方程).那么PDE是做什么用的呢?--描述客观物理世界。我想如果这两个问题搞清楚了也就明白了为什么要用fem,fem可以做那些东西。 PDE可以描述很多物理现象,电磁,流体,换热,diffusion,力学,河床变迁,物种竞争,股票金融,等等等等。。。。乃至整个宇宙,当然也不是所有的物理现象都可以用PDE描述,如微观世界分子原子的运动等等,所以我从来都不建议用有限元方法仿真微观物质现象的原因,但也有PDE应用于微观位置如possion 方程来解析plasma的物理现象,这在量子物理里面用统计的方法过于庞大,泼松方程反而使问题简单而且能吻合实验,这些都是题外话就不多说了。除了PDE以外,ODE同样也可以描述客观世界,但ODE多用于控制系统,很有一些线性PDE的解法也都是将PDE转化为ODE来做解析解的。
1.2 求解PDE
有了PDE以后,问题是如何求解并得到结果,首先要说明的是不是所有的PDE都有解的,往往有解的PDE才有实际工程意义。对于数值解法,常用的是有限差分,有限元和谱方法,还有蒙特卡罗法。有限差分出现的较早,计算精度相对较高,但是费时,且模型形状必须规则,边界条件处理困难,好处是可以比较方便的控制计算精度,适用于流体类的仿真。有限元方法效率高且满足精度要求,边界条件容易处理,得到了广大的应用,尤其是固体领域。谱方法由于可以采用FFT方法的来求解,使得程序有着精度高,收敛快的特点,也克服了有限元条件下使用高阶插值方程计算费时的缺点,常常使用periodic boundary condition,但也有越来越多的算法使得一类二类边界成为可能,适合微观尺度的PDE解,谱方法和有限元结合产生的谱元法取两者之优点,使得应用前景非常好。蒙特卡罗法不是基于弱解形式的,随机数的多维采样最终得到统计上的结果,多用于金融分析。咱这里还是着重有限元解PDE,顾名思义,有限元将整个计算几何模型划分为很多小的单元(element),每个单元的含有一定数量的节点(node),具体单个单元有多少节点,有对应的不同算法与差值方程,拿一个简单的线性4节点平面单元来说,每个单元包含4个节点,每个节点有对应的variable值,比如简单固体力学问题,每个节点就有对应的位移值,热力学问题每个节点就有对应的温度值,等等。然后单元内部的variables就通过差值方法计算得出。..........................

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删
相关文章
QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空