为什么已经有 ShaderForge这种可视化Shader编辑器、为什么Asset Store已经有那么多炫酷的Shader组件可下载,还是有必要学些Shader的编写?
2014-0718-1607-11-33.png
总之,Shader编写是重要的;但至于紧不紧急,视乎项目需求。
本文只讨论Unity ShaderLab相关的知识和使用方法。但,
2014-0720-1007-25-36.png
如上图,一句话总结:
所以关键是怎么编写Shader。
使用MonoDevelop这反人类的IDE来编写Shader居然是让人满意的。有语法高亮,无语法提示。
如果习惯VisualStudio,可以如下实现.Shader文件的语法高亮。
登录后复制
Shader "ShaderLab Tutorials/TestShader"
{
// ...
}
2014-0720-1707-17-42.png
Shader的名字会直接决定shader在material里出现的路径
登录后复制
Shader "ShaderLab Tutorials/TestShader" {
SubShader
{
//...
}
}
一个Shader有多个SubShader。一个SubShader可理解为一个Shader的一个渲染方案。即SubShader是为了针对不同的渲染情况而编写的。每个Shader至少1个SubShader、理论可以无限多个,但往往两三个就足够。
一个时刻只会选取一个SubShader进行渲染,具体SubShader的选取规则包括:
按此规则第一个被选取的SubShader将会用于渲染,未被选取的SubShader在这次渲染将被忽略。
登录后复制
Shader "ShaderLab Tutorials/TestShader" {
SubShader
{
Tags { "Queue"="Geometry+10" "RenderType"="Opaque" }
//...
}
}
SubShader内部可以有标签(Tags)的定义。Tag指定了这个SubShader的渲染顺序(时机),以及其他的一些设置。
"RenderType"
标签。Unity可以运行时替换符合特定RenderType的所有Shader。 Camera.RenderWithShader
或 Camera.SetReplacementShader
配合使用。Unity内置的RenderType包括:"Queue"
标签。定义渲染顺序。预制的值为"ForceNoShadowCasting"
,值为"true"
时,表示不接受阴影。"IgnoreProjector"
,值为"true"
时,表示不接受Projector组件的投影。另,关于渲染队列和Batch的非官方经验总结是,一帧的渲染队列的生成,依次决定于每个渲染物体的:
这个渲染队列决定了之后(可能有dirty flag的机制?)渲染器再依次遍历这个渲染队列,“同一种”材质的渲染物体合到一个Batch里。
登录后复制
Shader "ShaderLab Tutorials/TestShader" {
SubShader {
Pass
{
//...
}
}
}
一个SubShader(渲染方案)是由一个个Pass块来执行的。每个Pass都会消耗对应的一个DrawCall。在满足渲染效果的情况下尽可能地减少Pass的数量。
登录后复制
Shader "ShaderLab Tutorials/TestShader" {
SubShader {
Pass
{
Tags{ "LightMode"="ForwardBase" }
//...
}
}
}
和SubShader有自己专属的Tag类似,Pass也有Pass专属的Tag。
其中最重要Tag是 "LightMode"
,指定Pass和Unity的哪一种渲染路径(“Rendering Path”)搭配使用。除最重要的ForwardBase
、ForwardAdd
外,这里需额外提醒的Tag取值可包括:
Always
,永远都渲染,但不处理光照ShadowCaster
,用于渲染产生阴影的物体ShadowCollector
,用于收集物体阴影到屏幕坐标Buff里。其他渲染路径相关的Tag详见下面章节“Unity渲染路径种类”。
具体所有Tag取值,可参考 ShaderLab syntax: Pass Tags。
登录后复制
Shader "ShaderLab Tutorials/TestShader"{
SubShader { Pass {} }
FallBack "Diffuse" // "Diffuse"即Unity预制的固有Shader
// FallBack Off //将关闭FallBack
}
当本Shader的所有SubShader都不支持当前显卡,就会使用FallBack语句指定的另一个Shader。FallBack最好指定Unity自己预制的Shader实现,因其一般能够在当前所有显卡运行。
登录后复制
Shader "ShaderLab Tutorials/TestShader"
{
Properties {
_Range ("My Range", Range (0.02,0.15)) = 0.07 // sliders
_Color ("My Color", Color) = (.34, .85, .92, 1) // color
_2D ("My Texture 2D", 2D) = "" {} // textures
_Rect("My Rectangle", Rect) = "name" { }
_Cube ("My Cubemap", Cube) = "name" { }
_Float ("My Float", Float) = 1
_Vector ("My Vector", Vector) = (1,2,3,4)
// Display as a toggle.
[Toggle] _Invert ("Invert color?", Float) = 0
// Blend mode values
[Enum(UnityEngine.Rendering.BlendMode)] _Blend ("Blend mode", Float) = 1
//setup corresponding shader keywords.
[KeywordEnum(Off, On)] _UseSpecular ("Use Specular", Float) = 0
}
// Shader
SubShader{
Pass{
//...
uniform float4 _Color;
//...
float4 frag() : COLOR{ return fixed4(_Color); }
//...
#pragma multi_compile __ _USESPECULAR_ON
}
}
//fixed pipeline
SubShader {
Pass{
Color[_Color]
}
}
}
Material
的接口(比如SetFloat
、SetTexture
编辑)[name]
(固定管线)或直接name
(可编程Shader)访问这些属性。有3种基本数值类型:float
、half
和fixed
。
这3种基本数值类型可以再组成vector和matrix,比如half3
是由3个half
组成、float4x4
是由16个float
组成。
float
:32位高精度浮点数。half
:16位中精度浮点数。范围是[-6万, +6万],能精确到十进制的小数点后3.3位。fixed
:11位低精度浮点数。范围是[-2, 2],精度是1/256。当提到“Row-Major”、“Column-Major”,根据不同的场合,它们可能指不同的意思:
上述情况,互不相干。
然后,ShaderLab中,数学上是Column Vector、访问接口上是Row-Major、存储上是(尚未查明)。
一般情况下,从Vertex Buff输入顶点到Vertex Shader,
vInModel
,vInModel = float4(xm, ym, zm, 1)
;vInWrold = mul(_Object2World , vInModel)
后,得出左手坐标系World Space中的vInWorld
,其为w=1的Homogenous Cooridniates(故等效于Cartesian Coordinates)vInWorld = float4(xw, yw, zw, 1)
;vInView = mul(UNITY_MATRIX_V , vInWrold)
后,得出右手坐标系View Space中的vInView
,其为w=1的Homogenous Cooridniates(故等效于Cartesian Coordinates)vInWorld = float4(xv, yv, zv, 1)
;vInClip = mul(UNITY_MATRIX_P , vInView)
后,得出左手坐标系Clip Space中的vInClip
,其为w往往不等于1的Homogenous Cooridniates(故往往不等效于Cartesian Coordinates)vInClip = float4(xc, yc, zc, wc)
;vInNDC = vInClip / vInClip.w
后,得出左手坐标系Normalized Device Coordinates中的vInNDC
,其为w=1的Homogenous Cooridniates(故等效于Cartesian Coordinates)vInNDC = float4(xn, yn, zn, 1)
。xn
和yn
的取值范围为[-1,1]。v2f vert (appdata v)
{
v2f o;
o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
// 1 、2、3是等价的,和4是不等价的
// 因为是M在左、V在右,所以是Column Vector
// 因为是HLSL/CG语言,所以是访问方式是Row-Major
o.rootInView = mul(UNITY_MATRIX_MV, float4(0, 0, 0, 1)); // 1
o.rootInView = float4(UNITY_MATRIX_MV[0].w, UNITY_MATRIX_MV[1].w, UNITY_MATRIX_MV[2].w, 1); // 2
o.rootInView = UNITY_MATRIX_MV._m03_m13_m23_m33; // 3
//o.rootInView = UNITY_MATRIX_MV[3]; // 4
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// 因为是ViewSpace是右手坐标系,所以当root在view前面的时候,z是负数,所以需要-z才能正确显示颜色
fixed4 col = fixed4(i.rootInView.x, i.rootInView.y, -i.rootInView.z, 1);
return col;
}
struct appdata
{
float4 vertex : POSITION;
};
struct v2f
{
float4 rootInView : TEXCOORD0;
float4 vertex : SV_POSITION;
};
固定管线是为了兼容老式显卡。都是顶点光照。之后固定管线可能是被Unity抛弃的功能,所以最好不学它、当它不存在。特征是里面出现了形如下面Material
块、没有CGPROGRAM
和ENDCG
块。
登录后复制
Shader "ShaderLab Tutorials/TestShader"
{
Properties {
_Color ("My Color", Color) = (.34, .85, .92, 1) // color
}
// Fixed Pipeline
SubShader
{
Pass
{
Material{
Diffuse [_Color]
Ambient [_Color]
}
Lighting On
}
}
}
登录后复制
Shader "ShaderLab Tutorials/TestShader"
{
Properties {}
SubShader
{
Pass
{
// ... the usual pass state setup ...
CGPROGRAM
// compilation directives for this snippet, e.g.:
#pragma vertex vert
#pragma fragment frag
// the Cg/HLSL code itself
float4 vert(float4 v:POSITION) : SV_POSITION{
return mul(UNITY_MATRIX_MVP, v);
}
float4 frag() : COLOR{
return fixed4(1.0, 0.0, 0.0, 1.0);
}
ENDCG
// ... the rest of pass setup ...
}
}
}
CGPROGRAM
和ENDCG
块#pragma
。详见 官网Cg snippets。其中重要的包括:编译指令 | 示例/含义 |
---|---|
#pragma vertex name #pragma fragment name | 替换name,来指定Vertex Shader函数、Fragment Shader函数。 |
#pragma target name | 替换name(为2.0 、3.0 等)。设置编译目标shader model的版本。 |
#pragma only_renderers name name ... #pragma exclude_renderers name name... | #pragma only_renderers gles gles3 ,#pragma exclude_renderers d3d9 d3d11 opengl ,只为指定渲染平台(render platform)编译 |
#include "UnityCG.cginc"
引入指定的库。常用的就是UnityCG.cginc
了。其他库详见 官网Built-in shader include files。UNITY_MATRIX_MVP
就代表了这个时刻的MVP矩阵。详见 官网ShaderLab built-in values。COLOR
、SV_Position
、TEXCOORD[n]
。完整的参数语义可见 HLSL Semantic(由于是HLSL的连接,所以可能不完全在Unity里可以使用)。数据结构 | 含义 |
---|---|
appdata_base | vertex shader input with position, normal, one texture coordinate. |
appdata_tan | vertex shader input with position, normal, tangent, one texture coordinate. |
appdata_full | vertex shader input with position, normal, tangent, vertex color and two texture coordinates. |
appdata_img | vertex shader input with position and one texture coordinate. |
登录后复制
Shader "ShaderLab Tutorials/TestShader"
{
Properties { }
// Surface Shader
SubShader {
Tags { "RenderType" = "Opaque" }
CGPROGRAM
#pragma surface surf Lambert
struct Input {
float4 color : COLOR;
};
void surf (Input IN, inout SurfaceOutput o) {
o.Albedo = 1;
}
ENDCG
}
FallBack "Diffuse"
}
CGPROGRAM
和ENDCG
块。(而不是出现在Pass里。因为SurfaceShader自己会编译成多个Pass。)#pragma surface surfaceFunction lightModel [optionalparams]
Input
)、编写自己的Surface函数处理输入、最终输出修改过后的SurfaceOutput。SurfaceOutput的定义为点击a.shader
文件的“Compile and show code”,可以看到该文件的“编译”过后的ShaderLab shader文件,文件名形如Compiled-a.shader
。
其依然是ShaderLab文件,其包含最终提交给GPU的shader代码字符串。
先就其结构进行简述如下,会发现和上述的编译前ShaderLab结构很相似。
登录后复制
// Compiled shader for iPhone, iPod Touch and iPad, uncompressed size: 36.5KB
// Skipping shader variants that would not be included into build of current scene.
Shader "ShaderLab Tutorials/TestShader"
{
Properties {...}
SubShader {
// Stats for Vertex shader:
// gles : 14 avg math (11..19), 1 avg texture (1..2)
// metal : 14 avg math (11..17)
// Stats for Fragment shader:
// metal : 14 avg math (11..19), 1 avg texture (1..2)
Pass {
Program "vp" // vertex program
{
SubProgram "gles" {
// Stats: 11 math, 1 textures
Keywords{...} // keywords for shader variants ("uber shader")
//shader codes in string
"
#ifdef VERTEX
vertex shader codes
#endif
// Note, on gles, fragment shader stays here inside Program "vp"
#ifdef FRAGMENT
fragment shader codes
#endif
"
}
SubProgram "metal" {
some setup
Keywords{...}
//vertex shader codes in string
"..."
}
}
Program "fp" // fragment program
{
SubProgram "gles" {
Keywords{...}
"// shader disassembly not supported on gles" //(because gles fragment shader codes are in Program "vp")
}
SubProgram "metal" {
common setup
Keywords{...}
//fragment shader codes in string
"..."
}
}
}
}
...
}
开发者可以在Unity工程的PlayerSettings设置对渲染路径进行3选1:
每个渲染路径的内部会再分为几个阶段。
然后,Shader里的每个Pass,都可以指定为不同的LightMode。而LightMode实际就是说:“我希望这个Pass在这个XXX渲染路径的这个YYY子阶段被执行”。
渲染路径内部子阶段 | 对应的LightMode | 描述 |
---|---|---|
Base Pass | "PrepassBase" | 渲染物体信息。即把法向量、高光度到一张ARGB32的物体信息纹理上,把深度信息保存在Z-Buff上。 |
Lighting Pass | 无对应可编程Pass | 根据Base Pass得出的物体信息,在屏幕坐标系下,使用BlinnPhong光照模式,把光照信息渲染到ARGB32的光照信息纹理上(RGB表示diffuse颜色值、A表示高光度) |
Final Pass | "PrepassFinal" | 根据光照信息纹理,物体再渲染一次,将光照信息、纹理信息和自发光信息最终混合。LightMap也在这个Pass进行。 |
渲染路径内部子阶段 | 对应的LightMode | 描述 |
---|---|---|
Base Pass | "ForwardBase" | 渲染:最亮一个的方向光光源(像素级)和对应的阴影、所有顶点级光源、LightMap、所有LightProbe的SH光源(Sphere Harmonic,球谐函数,效率超高的低频光)、环境光、自发光。 |
Additional Passes | "ForwardAdd" | 其他需要像素级渲染的的光源 |
注意到的是,在Forward Rendering中,光源可能是像素级光源、顶点级光源或SH光源。其判断标准是:
另外,配置成“Auto”的光源有更复杂的判断标注,截图如下:
2014-0720-1607-31-40.png
具体可参考 Forward Rendering Path Details。
渲染路径内部子阶段 | 对应的LightMode | 描述 |
---|---|---|
Vertex | "Vertex" | 渲染无LightMap物体 |
VertexLMRGBM | "VertexLMRGBM" | 渲染有RGBM编码的LightMap物体 |
VertexLM | "VertexLM" | 渲染有双LDR编码的LightMap物体 |
一个工程的渲染路径是唯一的,但一个工程里的Shader是允许配有不同LightMode的Pass的。
在Unity,策略是“从工程配置的渲染路径模式开始,按Deferred、Forward、VertxLit的顺序,搜索最匹配的LightMode的一个Pass”。
比如,在配置成Deferred路径时,优先选有Deferred相关LightMode的Pass;找不到才会选Forward相关的Pass;还找不到,才会选VertexLit相关的Pass。
再比如,在配置成Forward路径时,优先选Forward相关的Pass;找不到才会选VertexLit相关的Pass。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删