TensorFlow实战:图像预处理技术

当然 tensorflow 并不是一种用于图像处理的框架,这里图像处理仅仅是一些简单的像素级操作,最终目的比如用于数据增强

  • tf.random_crop()
  • tf.image.random_flip_left_right():
  • tf.image.random_hue()



登录后复制

def pre_process_image(image, training):
    # This function takes a single image as input,
    # and a boolean whether to build the training or testing graph.

    if training:
        # For training, add the following to the TensorFlow graph.

        # Randomly crop the input image.
        image = tf.random_crop(image, size=[img_size_cropped, img_size_cropped, num_channels])

        # Randomly flip the image horizontally.
        image = tf.image.random_flip_left_right(image)

        # Randomly adjust hue, contrast and saturation.
        image = tf.image.random_hue(image, max_delta=0.05)
        image = tf.image.random_contrast(image, lower=0.3, upper=1.0)
        image = tf.image.random_brightness(image, max_delta=0.2)
        image = tf.image.random_saturation(image, lower=0.0, upper=2.0)

        # Some of these functions may overflow and result in pixel
        # values beyond the [0, 1] range. It is unclear from the
        # documentation of TensorFlow 0.10.0rc0 whether this is
        # intended. A simple solution is to limit the range.

        # Limit the image pixels between [0, 1] in case of overflow.
        image = tf.minimum(image, 1.0)
        image = tf.maximum(image, 0.0)
    else:
        # For training, add the following to the TensorFlow graph.

        # Crop the input image around the centre so it is the same
        # size as images that are randomly cropped during training.
        image = tf.image.resize_image_with_crop_or_pad(image,
                                                       target_height=img_size_cropped,
                                                       target_width=img_size_cropped)

    return image
    


免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空