TensorFlow深度学习英文文献导读

TensorFlow是一个采用数据流图(data flow graphs)用于数值计算的开源软件库。它最初是由Google大脑小组的研发人员设计开发的,用于机器学习和神经网络方面的研究。但是这个系统的通用性使其也可以广泛的应用于其他的计算领域。

TensorFlow的命名是根据它的原理来的,Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算。TensorFlow运行过程就是张量从图的一端流动到另一端的计算过程。张量从图中流过的直观图像是这个工具取名为“TensorFlow”的原因。



TensorFlow的特性:

1)高度的灵活性:TensorFlow不是一个严格的“神经网络”库。只要你可以将你的计算表示为一个数据流图,你就可以使用它。

2)可移植性:TensorFlow可以运行在台式机、服务器、移动设备等,可在多CPU和多GPU上运行,充分利用计算资源。

3)TensorFlow提供了一套Python使用接口来构建和执行graphs,同样也提供了C++使用的接口(目前训练神经网络只支持python,C++接口智能使用已经训练好的模型)。未来还会支持JAVA、Go等。

4)性能最优化:TensorFlow给予了线程、队列、异步操作等最佳的支持,它可以充分发挥你手上的硬件设备,充分利用多CPU和多GPU。




TensorFlow中的关键词理解:

1、图(Graph):图描述了计算的过程,TensorFlow使用图来表示计算任务。

2、张量(Tensor):表示数据,每一个Tensor是一个类型化的多维数组。

3、操作(op):图中的节点被称为op,一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。

4、会话(Session):图必须在称之为“回话”的上下文中执行。“会话”将op分发到计算设备上去执行,例如CPU或者GPU

5、变量(Variable):运行过程中可以被改变,用于维护状态。

注意:TensorFlow的实现上会把图转换成分布式执行的操作,以充分利用计算资源。通常情况下,你不需要显示的指示CPU或者GPU。TensorFlow可以自动的进行检测,如果检测到GPU,它会使用第一个GPU来进行操作,如果你的机器上有多个GPU,为了使用除了第一个以外的GPU,你必须将op明确的指派给他们。



说了这么多该说说TensorFlow的安装了,安装前首先注意安装环境(这里只说windows):

1、Python的版本:我在装的时候费了不少劲,因为笔记本有点年数了,是32位的,但是windows下TensorFlow只支持Python3.5(3.6没有试过)注意啦,Python版本必须是64位python3.5。Python3.5 64位是没法装在32位的机器上的,幸亏我的电脑支持64位,又重装系统,估计现在32位系统也少了,不过这的确是一个坑。


2、那就是使用Anaconda3了,在Anaconda Navigator上安装就行了.


免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空