TensorFlow Lite教程笔记详解

TensorFlow Lite 是 TensorFlow 在移动和 IoT 等边缘设备端的解决方案,提供了 Java、Python 和 C++ API 库,可以运行在 Android、iOS 和 Raspberry Pi 等设备上。2019 年是 5G 元年,万物互联的时代已经来临,作为 TensorFlow 在边缘设备上的基础设施,TFLite 将会是愈发重要的角色。


目前 TFLite 只提供了推理功能,在服务器端进行训练后,经过如下简单处理即可部署到边缘设备上。

  • 模型转换:由于边缘设备计算等资源有限,使用 TensorFlow 训练好的模型,模型太大、运行效率比较低,不能直接在移动端部署,需要通过相应工具进行转换成适合边缘设备的格式。
  • 边缘设备部署:本节以 android 为例,简单介绍如何在 android 应用中部署转化后的模型,完成 Mnist 图片的识别。模型转换


转换工具有两种:命令行工具和 Python API

TF2.0 对模型转换工具发生了非常大的变化,推荐大家使用 Python API 进行转换,命令行工具只提供了基本的转化功能。转换后的原模型为 FlatBuffers 格式。 FlatBuffers 原来主要应用于游戏场景,是谷歌为了高性能场景创建的序列化库,相比 Protocol Buffer 有更高的性能和更小的大小等优势,更适合于边缘设备部署。

转换方式有两种:Float 格式和 Quantized 格式

为了熟悉两种方式我们都会使用,针对 Float 格式的,先使用命令行工具 tflite_convert ,其跟随 TensorFlow 一起安装。

在终端执行如下命令:

tflite_convert -h


输出结果如下,即该命令的使用方法:


usage: tflite_convert [-h] --output_file OUTPUT_FILE
                      (--saved_model_dir SAVED_MODEL_DIR | --keras_model_file KERAS_MODEL_FILE)
  --output_file OUTPUT_FILE
                        Full filepath of the output file.
  --saved_model_dir SAVED_MODEL_DIR
                        Full path of the directory containing the SavedModel.
  --keras_model_file KERAS_MODEL_FILE
                        Full filepath of HDF5 file containing tf.Keras model.


在 TensorFlow 模型导出 中,我们知道 TF2.0 支持两种模型导出方法和格式 SavedModel 和 Keras Sequential。

SavedModel 导出模型转换:


tflite_convert --saved_model_dir=saved/1 --output_file=mnist_savedmodel.tflite


Keras Sequential 导出模型转换:


tflite_convert --keras_model_file=mnist_cnn.h5 --output_file=mnist_sequential.tflite


到此,已经得到两个 TensorFlow Lite 模型。因为两者后续操作基本一致,我们只处理 SavedModel 格式的,Keras Sequential 的转换可以按类似方法处理。
Android 部署

现在开始在 Android 环境部署,为了获取 SDK 和 gradle 编译环境等资源,需要先给 Android Studio 配置 proxy 或者使用镜像。

配置 build.gradle

build.gradle 中的 maven 源 google()jcenter() 分别替换为阿里云镜像地址,如下:

buildscript {

    repositories {
        maven { url 'https://maven.aliyun.com/nexus/content/repositories/google' }
        maven { url 'https://maven.aliyun.com/nexus/content/repositories/jcenter' }
    }
    dependencies {
        classpath 'com.android.tools.build:gradle:3.5.1'
    }
}

allprojects {
    repositories {
        maven { url 'https://maven.aliyun.com/nexus/content/repositories/google' }
        maven { url 'https://maven.aliyun.com/nexus/content/repositories/jcenter' }
    }
}


配置 app/build.gradle

新建一个 Android Project,打开 app/build.gradle 添加如下信息:

android {
    aaptOptions {
        noCompress "tflite" // 编译apk时,不压缩tflite文件
    }
}

dependencies {
    implementation 'org.tensorflow:tensorflow-lite:1.14.0'
}


其中,

  1. aaptOptions 设置 tflite 文件不压缩,确保后面 tflite 文件可以被 Interpreter 正确加载。
  2. org.tensorflow:tensorflow-lite 的最新版本号可以在这里查询 https://bintray.com/google/tensorflow/tensorflow-lite

设置好后,sync 和 build 整个工程,如果 build 成功说明,配置成功。

添加 tflite 文件到 assets 文件夹

在 app 目录先新建 assets 目录,并将 mnist_savedmodel.tflite 文件保存到 assets 目录。重新编译 apk,检查新编译出来的 apk 的 assets 文件夹是否有 mnist_cnn.tflite 文件。

点击菜单 Build->Build APK (s) 触发 apk 编译,apk 编译成功点击右下角的 EventLog。点击最后一条信息中的 analyze 链接,会触发 apk analyzer 查看新编译出来的 apk,若在 assets 目录下存在 mnist_savedmodel.tflite ,则编译打包成功,如下:

assets
     |__mnist_savedmodel.tflite


加载模型

使用如下函数将 mnist_savedmodel.tflite 文件加载到 memory-map 中,作为 Interpreter 实例化的输入

/** Memory-map the model file in Assets. */
private MappedByteBuffer loadModelFile(Activity activity) throws IOException {
    AssetFileDescriptor fileDescriptor = activity.getAssets().openFd(mModelPath);
    FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor());
    FileChannel fileChannel = inputStream.getChannel();
    long startOffset = fileDescriptor.getStartOffset();
    long declaredLength = fileDescriptor.getDeclaredLength();
    return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength);
}


memory-map 可以把整个文件映射到虚拟内存中,用于提升 tflite 模型的读取性能。更多请参考: JDK API 介绍

实例化 Interpreter,其中 acitivity 是为了从 assets 中获取模型,因为我们把模型编译到 assets 中,只能通过 getAssets() 打开。


mTFLite = new Interpreter(loadModelFile(activity));


memory-map 后的 MappedByteBuffer 直接作为 Interpreter 的输入, mTFLiteInterpreter )就是转换后模型的运行载体。

运行输入

我们使用 MNIST test 测试集中的图片作为输入,mnist 图像大小 28*28,单像素,因为我们输入的数据需要设置成如下格式

//Float模型相关参数
// com/dpthinker/mnistclassifier/model/FloatSavedModelConfig.java
protected void setConfigs() {
    setModelName("mnist_savedmodel.tflite");

    setNumBytesPerChannel(4);

    setDimBatchSize(1);
    setDimPixelSize(1);

    setDimImgWeight(28);
    setDimImgHeight(28);

    setImageMean(0);
    setImageSTD(255.0f);
}

// 初始化
// com/dpthinker/mnistclassifier/classifier/BaseClassifier.java
private void initConfig(BaseModelConfig config) {
    this.mModelConfig = config;
    this.mNumBytesPerChannel = config.getNumBytesPerChannel();
    this.mDimBatchSize = config.getDimBatchSize();
    this.mDimPixelSize = config.getDimPixelSize();
    this.mDimImgWidth = config.getDimImgWeight();
    this.mDimImgHeight = config.getDimImgHeight();
    this.mModelPath = config.getModelName();
}


将 MNIST 图片转化成 ByteBuffer ,并保持到 imgDataByteBuffer )中


// 将输入的Bitmap转化为Interpreter可以识别的ByteBuffer
// com/dpthinker/mnistclassifier/classifier/BaseClassifier.java
protected ByteBuffer convertBitmapToByteBuffer(Bitmap bitmap) {
    int[] intValues = new int[mDimImgWidth * mDimImgHeight];
    scaleBitmap(bitmap).getPixels(intValues,
            0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());

    ByteBuffer imgData = ByteBuffer.allocateDirect(
            mNumBytesPerChannel * mDimBatchSize * mDimImgWidth * mDimImgHeight * mDimPixelSize);
    imgData.order(ByteOrder.nativeOrder());
    imgData.rewind();

    // Convert the image toFloating point.
    int pixel = 0;
    for (int i = 0; i < mDimImgWidth; ++i) {
        for (int j = 0; j < mDimImgHeight; ++j) {
            //final int val = intValues[pixel++];
            int val = intValues[pixel++];
            mModelConfig.addImgValue(imgData, val); //添加把Pixel数值转化并添加到ByteBuffer
        }
    }
    return imgData;
}

// mModelConfig.addImgValue定义
// com/dpthinker/mnistclassifier/model/FloatSavedModelConfig.java
public void addImgValue(ByteBuffer imgData, int val) {
    imgData.putFloat(((val & 0xFF) - getImageMean()) / getImageSTD());
}


convertBitmapToByteBuffer 的输出即为模型运行的输入。

运行输出

定义一个 1*10 的多维数组,因为我们只有 10 个 label,具体代码如下

privateFloat[][] mLabelProbArray = newFloat[1][10];


运行结束后,每个二级元素都是一个 label 的概率。

运行及结果处理

开始运行模型,具体代码如下

mTFLite.run(imgData, mLabelProbArray);


针对某个图片,运行后 mLabelProbArray 的内容就是各个 label 识别的概率。对他们进行排序,找出 Top 的 label 并界面呈现给用户.

在 Android 应用中,作者使用了 View.OnClickListener() 触发 "image/*" 类型的 Intent.ACTION_GET_CONTENT ,进而获取设备上的图片(只支持 MNIST 标准图片)。然后,通过 RadioButtion 的选择情况,确认加载哪种转换后的模型,并触发真正分类操作。

选取一张 MNIST 测试集中的图片进行测试,得到结果如下:
【Tensorflow教程笔记】TensorFlow Lite_Tensorflow

注意我们这里直接用 mLabelProbArray 数值中的 index 作为 label 了,因为 MNIST 的 label 完全跟 index 从 0 到 9 匹配。如果是其他的分类问题,需要根据实际情况进行转换。
Quantization 模型转换
Quantized 模型是对原模型进行转换过程中,将 float 参数转化为 uint8 类型,进而产生的模型会更小、运行更快,但是精度会有所下降。

前面我们介绍了 Float 模型的转换方法,接下来我们要展示下 Quantized 模型,在 TF1.0 上,可以使用命令行工具转换 Quantized 模型。在作者尝试的情况看在 TF2.0 上,命令行工具目前只能转换为 Float 模型,Python API 只能转换为 Quantized 模型。



Python API 转换方法如下:

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model('saved/1')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
open("mnist_savedmodel_quantized.tflite", "wb").write(tflite_quant_model)


最终转换后的 Quantized 模型即为同级目录下的 mnist_savedmodel_quantized.tflite

相对 TF1.0,上面的方法简化了很多,不需要考虑各种各样的参数,谷歌一直在优化开发者的使用体验。

在 TF1.0 上,我们可以使用 tflite_convert 获得模型具体结构,然后通过 graphviz 转换为 pdf 或 png 等方便查看。 在 TF2.0 上,提供了新的一步到位的工具 visualize.py ,直接转换为 html 文件,除了模型结构,还有更清晰的关键信息总结。

visualize.py 目前看应该还是开发阶段,使用前需要先从 github 下载最新的 TensorFlow 和 FlatBuffers 源码,并且两者要在同一目录,因为 visualize.py 源码中是按两者在同一目录写的调用路径。 下载 TensorFlow: git clone git@github.com:tensorflow/tensorflow.git 1. 下载 FlatBuffers: git clone git@github.com:google/flatbuffers.git 1. 编译 FlatBuffers:(作者使用的 Mac,其他平台请大家自行配置,应该不麻烦) 下载 cmake:执行 brew install cmake 设置编译环境:在 FlatBuffers 的根目录,执行 cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release 编译:在 FlatBuffers 的根目录,执行 make 编译完成后,会在根目录生成 flatc,这个可执行文件是 visualize.py 运行所依赖的。

visualize.py 使用方法

在 tensorflow/tensorflow/lite/tools 目录下,执行如下命令

python visualize.py mnist_savedmodel_quantized.tflite mnist_savedmodel_quantized.html


生成可视化报告的关键信息
【Tensorflow教程笔记】TensorFlow Lite_Tensorflow_02
模型结构
【Tensorflow教程笔记】TensorFlow Lite_Tensorflow_03

可见,Input/Output 格式都是 FLOAT32 的多维数组,Input 的 min 和 max 分别是 0.0 和 255.0。

跟 Float 模型对比,Input/Output 格式是一致的,所以可以复用 Float 模型 Android 部署过程中的配置。

暂不确定这里是否是 TF2.0 上的优化,如果是这样的话,对开发者来说是非常友好的,如此就归一化了 Float 和 Quantized 模型处理了。

具体配置如下:

// Quantized模型相关参数
// com/dpthinker/mnistclassifier/model/QuantSavedModelConfig.java
public class QuantSavedModelConfig extends BaseModelConfig {
    @Override
    protected void setConfigs() {
        setModelName("mnist_savedmodel_quantized.tflite");

        setNumBytesPerChannel(4);

        setDimBatchSize(1);
        setDimPixelSize(1);

        setDimImgWeight(28);
        setDimImgHeight(28);

        setImageMean(0);
        setImageSTD(255.0f);
    }

    @Override
    public void addImgValue(ByteBuffer imgData, int val) {
        imgData.putFloat(((val & 0xFF) - getImageMean()) / getImageSTD());
    }
}


运行效果如下:
【Tensorflow教程笔记】TensorFlow Lite_Tensorflow_04

Float 模型与 Quantized 模型大小与性能对比:


模型类别FloatQuantized
模型大小312K82K
运行性能5.858854ms1.439062ms

可见, Quantized 模型在模型大小和运行性能上相对 Float 模型都有非常大的提升。不过,在作者试验的过程中,发现有些图片在 Float 模型上识别正确的,在 Quantized 模型上会识别错,可见 Quantization 对模型的识别精度还是有影响的。在边缘设备上资源有限,需要在模型大小、运行速度与识别精度上找到一个权衡。
总结


本节介绍了如何从零开始部署 TFLite 到 Android 应用中,包括:

  1. 如何将训练好的 MNIST SavedModel 模型,转换为 Float 模型和 Quantized 模型
  2. 如何使用 visualize.py 和解读其结果信息
  3. 如何将转换后的模型部署到 Android 应用中


免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空