OptiStruct结构优化技术在航空结构设计中的应用

“我们对某航空产品支架进行静态分析,并在此基础上完成拓扑优化分析。根据优化分析结果对原结构进行修改,对改进后的结构进行静态分析。结果表明,应用OptiStruct结构优化技术,不仅能够极大地降低产品的重量,而且对于改善产品的力学性能也具有积极的促进作用。”  —— 摘自 2010HTC大会用户论文

图片4.jpg


简介

利用Altair HyperWorks结构优化工具OptiStruct对某航空产品支架进行拓扑优化分析,并结合其强大的前处理软件HyperMesh、后处理软件HyperView以及通用仿真分析软件RADIOSS对优化前后的产品进行分析,从应力、变形、重量等方面对计算结果进行比较、总结。结果表明优化创新设计工具OptiStruct在改善机械产品性能、提高设计工作效率方面具有非常重要的作用,对航空产品设计及优化具有借鉴意义。



挑战

以有限元法为基础的结构优化设计工具已经被广泛而深入地应用到各行各业,在航空航天、汽车、机械等领域取得了大量革命性的成功应用。对于航空产品来说,重量是衡量产品性能一个非常重要的指标。如何降低产品重量,同时提高产品性能成为目前航空设计人员关注的重要问题之一。

庆安集团在进行某航空产品支架的设计中,需要对其结构进行优化设计,以降低产品的重量。

图片5.jpg



首先应用RADIOSS进行求解,得到支架上最大应力为21.6MPa,且仅出现在支架局部区域,而其余部分应力都较小,如图3-5所示。

图片6.jpg


根据以上分析可知,其最大应力远远小于材料的屈服强度,进行结构减重的潜力很大。




解决方案

考虑到支架与其他零件的装配关系,把支架有限元模型分为设计区域与非设计区域两个部分(图2):即仅对设计区域进行优化设计,使材料在此空间内进行重新分布,从而达到减重及改善力学性能的目的;对于非设计区域,单元形状与数目均不改变,以保证装配的功能性得以实现。为了得到正确的优化结果并方便产品的加工与制造,还添加了最小尺寸与拔模加工工艺约束。

根据优化目标,当所有优化变量部分的单元均保留时,有限元模型的应变能最小。因此,必须对拓扑优化进行约束,以体积比为优化约束。

优化设计使用的方法为密度法。从优化结果来看,原始模型有的部位变薄,有的部位被挖空,而这样的材料分布也最符合应力的流向。

图片7.jpg



根据拓扑优化结果对支架几何模型进行修改,改进后的模型如图9所示。重新对几何模型进行网格划分,根据初次分析结果,在应力较大部位进行网格细化,有限元模型如图10所示。

图片8.jpg



应用RADIOSS再次进行求解,优化后支架整体应力分布情况如图11-13所示:

图片9.jpg



结论

应用OptiStruct进行结构优化时, 优化后的支架应力最大值为15.3MPa, 降低了29.2%;其重量也减少了16.8%,节约了制造成本。优化后的结构应力分布比较均匀,其材料分布与结构中应力流的走向吻合较好,材料得到了充分的利用。

此次优化分析的目的在于减重,仅使用拓扑优化技术使材料在设计空间进行重新分布。若能根据结构的特点,综合OptiStruct其他优化技术如形状优化、尺寸优化等,充分发挥其优化功能,相信结构的力学性能会得到更大的改善。

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空