MATLAB深度使用教程

1.复习定积分(单变量)

       在之前,先复习一下之前学习的内容。使用matlab求解定积分的步骤大概如下:

       1.定义符号变量(syms关键字)

       2.定义内联函数(inline函数)

       3.使用matlab内置函数进行计算定积分或者不定积分(使用int函数,具体求解定积分还是不定积分,根据参数的数量决定)

       我们都知道:定积分是求解一个图形与坐标轴围成的面积。而今天我们需要深入理解一下:定积分是求解两条曲线之间围成的面积,如果只有一个公式,比如x,我们可以理解成 x-0,y=x 这个函数减去了 y=0这个常数函数,或者说,上面函数与x轴围成的面积减去了下面函数与x轴围成的面积(并且这个面积在x轴上方是正的,下方是负的),这样我们就可以推广,假设我们现在有两条曲线,一个是sinx,一个是 ,我们求在0-pi的范围内,两个图形围成的面积,容易知道,两个图形大概是这样围起来的:

        PS: 上图的代码和讲解如下

%% 目标图像clc;clear all;  % 清除原先的东西 x = 0:0.01:pi;  % x的范围是0-pi,以0.01为一个小分割点细分出一个范围y1 = sin(x);    % sinxy2 = exp(x);    % e^x figure;         % 弄一个figure的框体hold on;        % 保持这个窗体,保证后面的内容都画在了上面,hold off解除 subplot(221);   % 开辟子窗体,221:共2行2列,里面的第一个fill(x,y1,'r'); % 画图并填充颜色,变量是x,函数是y1,颜色是r,红色title('y=sinx');% 设置标题,必需先fill,才能添加标题,否则会失败 subplot(222);   % 开辟子窗体,222,共2行2列,里面第二个fill(x,y2,'b'); % b 蓝色title('y=e^x'); subplot(223);   % 开辟子窗体,223,共2行2列,里面第三个fill([x, fliplr(x)],[y1,fliplr(y2)],'g');                % 两个函数直接填充颜色,每一个方括号代表一个函数的内容title('两个函数中间的部分');hold off;

       OK,那么我们就可以很容易的使用int()函数算出这样一个定积分,代码如下:

%% 对上面的函数进行计算定积分syms x;f = 'exp(x) - sin(x)';res_int = int(f, x, 0, pi);disp(res_int);

       matlab计算结果

 

2.二重积分

       上面复习了定积分的计算和一般概念,下面我们看二重积分,先了解下二重积分是什么吧:

       二重积分的一个概念是求体积(还有其他的,比如薄片质量等,在这里先不谈,先说体积的问题),那么明确概念其实就不难了,定积分求面积、二重积分求体积,那么这个体积是哪里的体积呢?

       如图,粉红色的是z=f(x,y)的函数图像,下面是地面的阴影部分,红色的是边界,这个体积就是粉色的顶部与底面阴影之间的一个曲顶柱体的体积,那这个体积怎么求呢?

       在定积分中,我们把整个面积分成了无数个小面积,计算后累加,同样的,在二重积分中,我们也采取同样的方法,我们把这个柱体切成一个一个的小柱体,就像图中的那个黄色柱体一样,假设我们把整个底面分成了无数份,每一份的底面积都无限接近于0,假设这个底面积是d ,那么这个地方的高就是f(x,y),所以这个小柱体的体积就是 f(x,y)d ,我们只需要将这些小体积全部加起来,就能得到整个曲顶柱体的体积公式了:


       并且我们很容易发现,积分的区间其实就是底面,被积函数是曲面的公式。公式中各个符号在下图中体现:

        现在,计算一个例子给大家看,假设底面如图所示(灰色阴影部分):

       先积分x(Y型)时区域可表示为:Dx = {(x,y)|0<=y<=1, y<=x<=1}。

       先积分y(X型)时区域可表示为:Dy = {(x,y)|0<=y<=x, 0<=x<=1}。

       下面我们以X型为例,使用matlab计算曲面为 f(x,y) = xcos(y)的曲顶柱体的体积:

        详细的代码以及注释见下方:

%% 计算二重积分clear all;f = @(x,y)x.*cos(y); % 定义一个函数句柄,两个变量分别是x,y% 这样定义函数句柄时,需要在所有的运算前加一个.(表示对应元素各自计算,不按照矩阵的规则)ymax = @(x) x;  % 根据0<=y<=x处,右方的y=x反解出y,res = integral2(f,0,1,0,ymax);% 计算二重积分的函数 % integral2(fun, xmin, xmax, ymin, ymax)disp(res);

       最后,让我们欣赏一下这个曲面的形状吧:

        代码如下:

%% 看一看这个曲面吧[x,y] = meshgrid(0:0.001:1, 0:0.001:1);% 设置x和y的区间,以及细分程度z = (x.*cos(y));  % 使用一个z来代表这个函数mesh(x,y,z)  % 画出二维曲面图像title('x*cos(y)')      

免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删

QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空