中文摘要:随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。以上每个功能模块用MATLAB软件实现,最后识别出车牌,在研究设计的同时对其中出现的问题进行具体分析、处理,并寻求更优的方法。
一、总体设计
汽车号牌识别系统技术是从一幅车辆图像中准确定位出车牌区域,然后经过字符切割和字符识别来实现车辆牌照的自动识别。主要流程图如下:
图1.1
二、总体功能模块
基于MATLAB车牌识别系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五个关键环节[11],其基本工作如下:
(1) 图像采集:使用摄像头、照相机拍摄采集图像。
(2) 图像预处理:把图像转换成便于定位的二值化图像,需要经过图像灰度化、图像
增强、边缘提取、二值化操作。
(3)车牌定位:利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字
图像、形态学等技术对车牌进行定位。
(4)字符分割:以二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的
阈值则切割,从而完成字符的分割。
(5)字符识别:运用模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为模
板库中字符的大小,然后与所有的模板进行匹配,准确地识别车牌。输出识别
结果,并进行数据存储。
由于纹理特征车牌灰度图像的边缘、图像水平方向上的方差、水平方向上的梯度等比较稳定而且易于提取,所以本系统车牌定位算法采用纹理特征作为车牌的主要特征。在汽车号牌字符识别中,由于汉字的复杂性所以本设计的模板库字符包含5个汉字,26个大写英文字母及10个阿拉伯数字。首字符为汉字,第2-6个字符为英文字母或数字。本系统采用的是边缘检测的方法实现车牌定位的,寻找连续有文字的块的方法实现字符分割,模板匹配法来确定最终的识别结果。
三、具体设计
下图3.1流程图简要的概述了基本步骤:
五、 分析总结
汽车号牌识别系统是一个复杂的系统,考虑到时间和本人能力等因素,在这里我只做了一些初步的研究,很不够完善的地方,还需进一步的研究改进。
(1)汽车号牌识别系统是针对车牌为蓝底白字,7个字符水平排列的汽车车牌进行研
究。有些光照条件不理想的图片,需要先进行图象增强处理,让图象灰度动态范
围扩展和对比度增强,再进行车牌定位和分割,这样可以提高分割的成功率。色
彩通道的车牌区域分割算法充分利用了车牌图象的色彩信息,简化了算法的实现,
加快了图象的处理速度,具有较高的正确率,而且整个程序用MATLAB语言编
程实现,运算速度快。但是也存在一些识别效果不是很理想的图片,这些图片需
要做一些前提工作后才能识别出相应的字符。
(2)车牌定位和分割中利用的车牌区域的宽度信息以及字符尺寸信息,是根据采集到
的车辆图像通过人工或者经验测算出来的,实际中需要自动检测;
(3)由于基于寻找连续有文字的块的字符分割方法容易受噪声和环境光线变化的影
响,所以在车牌字符分割的预处理中,需要对分割出的字符车牌进行均值滤波,
膨胀或腐蚀的处理。经过这些处理可以把字符与字符之间的杂色点去除,只有白
色的字符和黑色的背景存在,有利于的字符分割进行[19]。
(4)字符识别方法中运用模板匹配的方法,方法简洁但识别率较低。模板匹配法,是
利用要识别的字符图片与字符库中的图片进行两幅图片相减的方法,找到相减后
值最小的图片,其相似程度最大的。模板库的字符制作很重要,必须要用精确的
模板,否则就不能正确的识别。
改进方法:
(1)在现有的基础上利用水平投影的方法检测非横向排列的7个字符车牌,根据车牌在水平方向上的投影的峰值特征判断牌照所属类型。
(2)在已定位车牌基础上检测牌照字符笔画的宽度,通过投影检测字符的尺寸信息;也可以通过摄像机架设的高度、角度与车道的关系,将这些参数作为系统参数进。
(3)改进字符分割的算法,在车牌定位以后对图像进行去噪处理,或者可以通过照明设备照射车辆,由于车辆牌照区域的反光特性,可以大大改善图像采集的质量,同时突出牌照区域,间接达到减少噪声的效果。
(4)可以考虑单独设备汉字识别器以及数字字母合一的识别来提高识别器的识别率!
function[word,result]=getword(d)word=[];flag=0;y1=8;y2=0.5;while flag==0 [m,n]=size(d); wide=0; while sum(d(:,wide+1))~=0 && wide<=n-2 wide=wide+1; end temp=qiege(imcrop(d,[1 1 wide m]));%用于返回图像的一个裁剪区域 [m1,n1]=size(temp); if wide<y1 && n1/m1>y2 d(:,[1:wide])=0; if sum(sum(d))~=0 d=qiege(d);%切割出最小范围 else word=[];flag=1; end else word=qiege(imcrop(d,[1 1 wide m])); d(:,[1:wide])=0; if sum(sum(d))~=0; d=qiege(d); flag=1; else d=[]; end endendresult=d;
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删