跨声速条件下,RAE2822翼型上表面易形成激波,在激波和湍流边界层的相互作用下有可能引起流动分离。为了获得RAE2822翼型的流动特性,研究人员在RAE 2.43 m×1.83 m连续式跨声速风洞中开展了一系列试验。测试马赫数范围0.6-0.75,获得了翼型表面静压分布、边界层和尾迹总压分布以及表面油流图谱等试验数据。本文以RAE2822翼型CASE6和CASE9为测试算例,检验SU2对于跨声速翼型流场的模拟能力。
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图1](https://www.gofarlic.com\upload\jishulink\506\v2-868db4de83781cd8e7be92077c93f13c_hd.jpg)
图 1 RAE2822跨声速翼型风洞试验模型
流场参数和网格
2.1 流场参数
RAE2822翼型在风洞中完成十余次试验。其中,case 6、9和10广泛用于CFD代码的考核验证。然而,由于受风洞试验条件限制,试验测得的马赫数和攻角数据并不准确。因此,人们在开展数值计算和试验对比研究时,需要对来流马赫数和攻角进行修正,本文将参考表1 提供的参数进行计算。
表 1 RAE2822翼型部分CASE流场参数
流场参数
CASE 6
试验参数:Ma=0.725 AoA=2.92° Rec=6.5×106
计算参数[1]:Ma=0.729 AoA=2.31° Rec=6.5×106
CASE 9
试验参数:Ma=0.730 AoA=3.19° Rec=6.5×106
计算参数[2]:Ma=0.734 AoA=2.79° Rec=6.5×106
注:
[1] https://www.grc.nasa.gov/www/wind/valid/raetaf/raetaf05/raetaf05.html;
[2] http://www.as.dlr.de/hiocfd/rae2822/index.html
2.2 计算网格
网格采用SU2算例库提供的网格(https://github.com/su2code/TestCases/tree
/master/rans/rae2822)。该网格在翼型附近采用结构化矩形网格,外部采用非结构三角形网格填充。计算域外围为半径为100倍弦长的圆形。
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图2](https://www.gofarlic.com\upload\jishulink\506\v2-d75fc75124d8ced65846ea3fa163900b_hd.jpg)
图 2 RAE2822翼型计算网格
3.SU2求解器设置
3.1 流场求解cfg文件设置
下面以马赫数为0.729、攻角为2.31°、湍流模型为SST的计算工况为例,介绍RAE2822算例的参数设置。
(1)问题定义
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= NAVIER_STOKES % % Specify turbulent model (NONE, SA, SA_NEG, SST) KIND_TURB_MODEL= SST % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO
(2)自由来流参数设置
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.729 % % Angle of attack (degrees, only for compressible flows) AOA= 2.31 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.15 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 6.5E6 % % Reynolds length (1 m by default) REYNOLDS_LENGTH= 0.61
(3)参考值设置
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 0.61
(4)边界条件设置
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( AIRFOIL, 0.0 ) % % Farfield boundary marker(s) (NONE = no marker) MARKER_FAR= ( FARFIELD ) % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( AIRFOIL ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( AIRFOIL )
(5)数值求解通用参数
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 10 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Number of total iterations EXT_ITER= 20000 % % Linear solver for the implicit formulation (BCGSTAB, FGMRES) LINEAR_SOLVER= BCGSTAB % % Min error of the linear solver for the implicit formulation LINEAR_SOLVER_ERROR= 1E-6 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 20
(6)多重网格参数
% -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= W_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.95 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.95
(7)流场计算数值格式
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_FLOW= YES % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Coefficient for the limiter (smooth regions) VENKAT_LIMITER_COEFF= 0.03 % % 2nd and 4th order artificial dissipation coefficients JST_SENSOR_COEFF= ( 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT
(8)湍流计算数值格式
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_TURB= NO % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT
(9)收敛准则
% --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 8 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -10 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-6 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG
(10)输入输出设置
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= RAE2822.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= restart_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Writing solution file frequency WRT_SOL_FREQ= 250 % % Writing convergence history frequency WRT_CON_FREQ= 1
3.2 运行方式
该算例网格量小,采用单核即可完成计算。在算例cfg文件所在目录,输入 SU2_CFD turb_SST_RAE2822.cfg,回车,即开始运行算例。
4.结果分析
4.1 CASE 6
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图3](https://www.gofarlic.com\upload\jishulink\506\v2-a16af211827e4e85e8cd480c92c47b73_hd.jpg)
图 3 RAE2822翼型压力分布SA和SST计算结果对比(CASE 6)
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图4](https://www.gofarlic.com\upload\jishulink\506\v2-fe5db6395150447726220a2e70dfe618_hd.jpg)
图 4 RAE2822翼型表面压力分布矢量(CASE 6)
图3展示了SU2求解器分别采用SA模型和SST模型计算的RAE2822翼型表面压力分布(Ma=0.729 AoA=2.31° Rec=6.5×106)。可以看到,SA、SST模型计算的压力分布与试验结果十分吻合。此外,两种模型的计算结果差异很小,仅在激波附近有较小差别。结果表明两种湍流模型都能较好地模拟RAE2822翼型跨声速流场。
4.2 CASE 9
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图5](https://www.gofarlic.com\upload\jishulink\506\v2-9cd827d528923f471afb6b0ef212600f_hd.jpg)
图 5 RAE2822翼型压力分布SA和SST计算结果对比(CASE 9)
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图6](https://www.gofarlic.com\upload\jishulink\506\v2-82a9dd45c6fd80b5c45fe2f45df0c2d7_hd.jpg)
图 6 RAE2822翼型表面压力分布矢量(CASE 9)
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图7](https://www.gofarlic.com\upload\jishulink\506\v2-83e8ecda316ed34e8ce7be4c593633fe_hd.jpg)
图 7 RAE2822翼型表面压力分布矢量(CASE 6和CASE 9)
CASE9(Ma=0.734 AoA=2.79°Rec=6.5×106)和CASE6(Ma=0.729 AoA=2.31° Rec=6.5×106)流场参数变化很小,流场特征也无明显变化。从模拟结果看,SU2求解器对于CASE 9的计算结果与试验也符合较好。
6.结论
(1)采用SU2求解器计算了RAE2822翼型CASE6 和CASE9流场,两个case的计算结果与试验结果均符合较好。
(2)SA和SST湍流模型计算结果差异较小,两者都能较好地模拟RAE2822翼型跨声速流场。
本文转自知乎专栏:SU2:学习与应用,原帖地址:https://zhuanlan.zhihu.com/p/61281032,感谢原作者,对作者其他文章感兴趣,欢迎关注:
![[案例分析]基于SU2的RAE2822超临界翼型流场计算的图8](https://www.gofarlic.com\upload\jishulink\506\v2-4349f08d777bc7b82fffb82963ad0932_hd.png)
及访问www.caesky.com 。