当我们拥有大量计算资源时,通过使用合适的分布式策略,我们可以充分利用这些计算资源,从而大幅压缩模型训练的时间。针对不同的使用场景,TensorFlow 在 tf.distribute.Strategy
中为我们提供了若干种分布式策略,使得我们能够更高效地训练模型。单机多卡训练: MirroredStrategy
tf.distribute.MirroredStrategy
是一种简单且高性能的,数据并行的同步式分布式策略,主要支持多个 GPU 在同一台主机上训练。使用这种策略时,我们只需实例化一个 MirroredStrategy
策略:
登录后复制
strategy = tf.distribute.MirroredStrategy()
并将模型构建的代码放入 strategy.scope()
的上下文环境中:
登录后复制
with strategy.scope():
# 模型构建代码
小技巧 可以在参数中指定设备,如: 登录后复制 strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"]) 1. 即指定只使用第 0、1 号 GPU 参与分布式策略。
以下代码展示了使用 MirroredStrategy
策略,在 TensorFlow Datasets 中的部分图像数据集上使用 Keras 训练 MobileNetV2 的过程:
登录后复制
import tensorflow as tf
import tensorflow_datasets as tfds
num_epochs = 5
batch_size_per_replica = 64
learning_rate = 0.001
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: %d' % strategy.num_replicas_in_sync) # 输出设备数量
batch_size = batch_size_per_replica * strategy.num_replicas_in_sync
# 载入数据集并预处理
def resize(image, label):
image = tf.image.resize(image, [224, 224]) / 255.0
return image, label
# 使用 TensorFlow Datasets 载入猫狗分类数据集,详见“TensorFlow Datasets数据集载入”一章
dataset = tfds.load("cats_vs_dogs", split=tfds.Split.TRAIN, as_supervised=True)
dataset = dataset.map(resize).shuffle(1024).batch(batch_size)
with strategy.scope():
model = tf.keras.applications.MobileNetV2(weights=None, classes=2)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=[tf.keras.metrics.sparse_categorical_accuracy]
)
model.fit(dataset, epochs=num_epochs)
在以下的测试中,我们使用同一台主机上的 4 块 NVIDIA GeForce GTX 1080 Ti 显卡进行单机多卡的模型训练。所有测试的 epoch 数均为 5。使用单机无分布式配置时,虽然机器依然具有 4 块显卡,但程序不使用分布式的设置,直接进行训练,Batch Size 设置为 64。使用单机四卡时,测试总 Batch Size 为 64(分发到单台机器的 Batch Size 为 16)和总 Batch Size 为 256(分发到单台机器的 Batch Size 为 64)两种情况。
数据集 | 单机无分布式(Batch Size 为 64) | 单机四卡(总 Batch Size 为 64) | 单机四卡(总 Batch Size 为 256) |
---|---|---|---|
cats_vs_dogs | 146s/epoch | 39s/epoch | 29s/epoch |
tf_flowers | 22s/epoch | 7s/epoch | 5s/epoch |
可见,使用 MirroredStrategy 后,模型训练的速度有了大幅度的提高。在所有显卡性能接近的情况下,训练时长与显卡的数目接近于反比关系。
MirroredStrategy 的步骤如下:
默认情况下,TensorFlow 中的 MirroredStrategy
策略使用 NVIDIA NCCL 进行 All-reduce 操作。多机训练: MultiWorkerMirroredStrategy
多机训练的方法和单机多卡类似,将 MirroredStrategy
更换为适合多机训练的 MultiWorkerMirroredStrategy
即可。不过,由于涉及到多台计算机之间的通讯,还需要进行一些额外的设置。具体而言,需要设置环境变量 TF_CONFIG
,示例如下:
登录后复制
os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["localhost:20000", "localhost:20001"]
},
'task': {'type': 'worker', 'index': 0}
})
TF_CONFIG
由 cluster
和 task
两部分组成:
以上内容设置完成后,在所有的机器上逐个运行训练代码即可。先运行的代码在尚未与其他主机连接时会进入监听状态,待整个集群的连接建立完毕后,所有的机器即会同时开始训练。
请在各台机器上均注意防火墙的设置,尤其是需要开放与其他主机通信的端口。如上例的 0 号 worker 需要开放 20000 端口,1 号 worker 需要开放 20001 端口。
以下示例的训练任务与前节相同,只不过迁移到了多机训练环境。假设我们有两台机器,即首先在两台机器上均部署下面的程序,唯一的区别是 task
部分,第一台机器设置为 {'type': 'worker', 'index': 0}
,第二台机器设置为 {'type': 'worker', 'index': 1}
。接下来,在两台机器上依次运行程序,待通讯成功后,即会自动开始训练流程。
登录后复制
import tensorflow as tf
import tensorflow_datasets as tfds
import os
import json
num_epochs = 5
batch_size_per_replica = 64
learning_rate = 0.001
num_workers = 2
os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["localhost:20000", "localhost:20001"]
},
'task': {'type': 'worker', 'index': 0}
})
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
batch_size = batch_size_per_replica * num_workers
def resize(image, label):
image = tf.image.resize(image, [224, 224]) / 255.0
return image, label
dataset = tfds.load("cats_vs_dogs", split=tfds.Split.TRAIN, as_supervised=True)
dataset = dataset.map(resize).shuffle(1024).batch(batch_size)
with strategy.scope():
model = tf.keras.applications.MobileNetV2(weights=None, classes=2)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=[tf.keras.metrics.sparse_categorical_accuracy]
)
model.fit(dataset, epochs=num_epochs)
在以下测试中,我们在 Google Cloud Platform 分别建立两台具有单张 NVIDIA Tesla K80 的虚拟机实例(具体建立方式参见 后文 在 Google Cloud Platform(GCP)中使用 TensorFlow ),并分别测试在使用一个 GPU 时的训练时长和使用两台虚拟机实例进行分布式训练的训练时长。所有测试的 epoch 数均为 5。使用单机单卡时,Batch Size 设置为 64。使用双机单卡时,测试总 Batch Size 为 64(分发到单台机器的 Batch Size 为 32)和总 Batch Size 为 128(分发到单台机器的 Batch Size 为 64)两种情况。
数据集 | 单机无分布式(Batch Size 为 64) | 双机单卡(总 Batch Size 为 64) | 双机单卡(总 Batch Size 为 128) |
---|---|---|---|
cats_vs_dogs | 1622s | 858s | 755s |
tf_flowers | 301s | 152s | 144s |
可见模型训练的速度同样有大幅度的提高。在所有机器性能接近的情况下,训练时长与机器的数目接近于反比关系。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删