matlab2017b
在PTS全局搜索的时候,预先设定好一个门限值,如果搜索到
那么就直接退出搜索。
所以使用这个方法,可以进行快速的搜索,而不用像全局搜索那样,全部搜索一遍,这种门限法仅仅是抑制了高于门限值的出现的概率,而并没有抑制低于门限值。
但是使用这个方法,可以大大降低PTS算法的复杂度。
然后针对这个方法存在的局限,加入限幅的思想,从而抑制高于门限的值。
限幅器的设计如下所示:
适当的引入了TR的思路到改进后的PTS算法中,引入的意义为:先预留出若干子载波来加载削峰信号,然后利用优化过的PTS算法对OFDM符号的PAPR进行抑制,之后再利用改进的TR算法对符号的PAPR进行进一步的抑制。虽然传统的PTS和TR算法比较复杂,但是本方法,结合了两种算法的优势,并使用其中的简化方法,进行优势互补,从而在算法复杂度较低的情况下,进一步提高系统的性能。
这里,我们使用改进后的PTS和TR进行结合,整个算法的流程如下所示:
步骤一:加入门限,降低PTS算法的复杂度(但是这样会降低性能)
当满足要求:
的时候
算法就停止搜索,这样的话,就降低的算法的复杂度,但是会影响性能。
步骤二:加入限幅的方法
通过这个方法,可以在步骤一的基础上,提高性能,使其在复杂度降低的前提下,保存系统的性能不变。
步骤三:改进PTS和TR的结合
为了和TR结合,首先,PTS分组必须为随机分组,并随机的保留一定的预留子载波,然后先执行PTS,再执行TR。
步骤四:执行TR
将得到的频域信号X进行IFFT变换得到时域信号x,对x的每个子载波上的数据限幅,对取反后的限幅差值进行N点FFT变换,得到的频域反向限幅差值信号的预留子载波上的数据即为削峰数据,用其替代X中预留子载波上的数据即可有效地消除峰值信号。
登录后复制
clc;clear;close all;warning off;SNR = 0:1:10;Nfft = 128; ij = sqrt(-1);Npts = 2; Map_qpsk = [1 -1 ij -ij];Init_Phase = [1 -1 ij -ij];Data_back = [1 1;1 2;1 3;1 4;2 1;2 2;2 3;2 4;3 1;3 2;3 3;3 4;4 1;4 2;4 3;4 4];Nframes = 20000;PAPR_pts = zeros(1,Nframes);Th = 9;Tho = 0.12;Tho2 = 0.2;for k = 1:Nframes if mod(k,1000) == 0 k/1000 end %产生数据源 QPSK_Ind = randint(1,Nfft,length(Map_qpsk))+1; %调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块 Qpsk_mod = Map_qpsk(QPSK_Ind(1,:)); %随机分割 tic; QPSK_Ind = randperm(Nfft); A = zeros(1,Nfft); for v=1:Npts A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft)); end a = ifft(A,[],2); %限幅 [rr,cc] = size(a); for i = 1:rr for j = 1:cc if abs(a(i,j)) > Tho a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j)); end end end for n = 1:4^Npts %相位组合因子 phase_temp = Init_Phase(Data_back(n,:)).'; if n == 1 a_temp = sum(a.*repmat(phase_temp,1,Nfft)); else a_temp = a_temp + sum(a.*repmat(phase_temp,1,Nfft)); end Signal_Power_temp = abs(a_temp.^2); Peak_Power_temp = max(Signal_Power_temp,[],2); Mean_Power_temp = mean(Signal_Power_temp,2); PAPR_temp = 10*log10(Peak_Power_temp./Mean_Power_temp); if PAPR_temp < Th PAPR_pts(k) = PAPR_temp; X2 = a_temp; break; end end %限幅 [rr,cc] = size(X2); X2s = X2; for i = 1:rr for j = 1:cc if abs(X2(i,j)) > Tho2 X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j)); end end end X3 = X2s; Signal_Power_temp = abs(X3.^2); Peak_Power_temp = max(Signal_Power_temp,[],2); Mean_Power_temp = mean(Signal_Power_temp,2); PAPRs(k) = 10*log10(Peak_Power_temp./Mean_Power_temp); times(k) = toc;end[cdf,PAPR] = ecdf(PAPRs);figure;semilogy(PAPR,1-cdf,'b','LineWidth',3);xlabel('PAPR0[dB]');ylabel('CCDF (Pr[PAPR>PAPR0])');grid on;title('有PAPR的时候的系统CCDF图');save PAPR_Data_with_PAPR.mat PAPR cdf%下面的代码是计算误码率的代码Error = zeros(1,length(SNR));Rec = zeros(1,Nfft); PAPR_pts = zeros(1,min(Nframes,2000));for ii = 1:length(SNR) Err_tmp = 0; for k=1:min(Nframes,2000) RandStream.setDefaultStream(RandStream('mt19937ar','seed',k*ii)); if mod(k,1000) == 0 ii k/1000 end %产生数据源 QPSK_Dat = randint(1,Nfft,length(Map_qpsk)) + 1; %调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块 Qpsk_mod = Map_qpsk(QPSK_Dat); %进行IFFT变换 %随机分割 QPSK_Ind = randperm(Nfft); A = zeros(1,Nfft); for v=1:Npts A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft)); end a = ifft(A,[],2); %限幅 [rr,cc] = size(a); for i = 1:rr for j = 1:cc if abs(a(i,j)) > Tho a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j)); end end end for n = 1:4^Npts %相位组合因子 phase_temp = Init_Phase(Data_back(n,:)).'; if n == 1 a_temp = sum(a.*repmat(phase_temp,1,Nfft)); else a_temp = a_temp + sum(a.*repmat(phase_temp,1,Nfft)); end Signal_Power_temp = abs(a_temp.^2); Peak_Power_temp = max(Signal_Power_temp,[],2); Mean_Power_temp = mean(Signal_Power_temp,2); PAPR_temp = 10*log10(Peak_Power_temp./Mean_Power_temp); if PAPR_temp < Th PAPR_pts(k) = PAPR_temp; X2 = a_temp; break; end end %限幅 [rr,cc] = size(X2); X2s = X2; for i = 1:rr for j = 1:cc if abs(X2(i,j)) > Tho2 X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j)); end end end X3 = X2s; R = X3; %通过高斯信道 Dat_Ifft = awgn(R,SNR(ii),'measured'); %模拟实际的接收端的畸变 Dat_Ifft2 = Dat_Ifft; if PAPR_pts(k) > 8+Tho+Tho2%瞬时功率过大,则畸变 Dat_Ifft2 = randn(1,Nfft) + ij*randn(1,Nfft); end %fft变换 Dat_fft = fft(Dat_Ifft2,[],2); %解调 I = sign(real(Dat_fft)).*(abs(real(Dat_fft))>0.5); Q = sign(imag(Dat_fft)).*(abs(imag(Dat_fft))>0.5); for i = 1:Nfft if I(i) == 1 & Q(i) == 0 Rec(i) = 1; end if I(i) == -1 & Q(i) == 0 Rec(i) = 2; end if I(i) == 0 & Q(i) == 1 Rec(i) = 3; end if I(i) == 0 & Q(i) == -1 Rec(i) = 4; end end Err_tmp = Err_tmp + length(find(QPSK_Dat~=Rec)); end Error(ii) = Err_tmp/min(Nframes,2000)/Nfft;endfigure;semilogy(SNR,Error,'b-o');xlabel('SNR');ylabel('Ber');grid on;title('有PAPR的时候的系统误码率图');disp('复杂度');FZD = mean(times);FZDsave BER_Data_with_PAPR.mat SNR Error FZD1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99.100.101.102.103.104.105.106.107.108.109.110.111.112.113.114.115.116.117.118.119.120.121.122.123.124.125.126.127.128.129.130.131.132.133.134.135.136.137.138.139.140.141.142.143.144.145.146.147.148.149.150.151.152.153.154.155.156.157.158.159.160.161.162.163.164.165.166.167.168.169.170.171.172.173.174.175.176.177.178.179.180.181.182.183.184.185.186.187.188.189.190.191.192.193.194.195.196.197.198.199.200.
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删