随着国民经济的快速发展,各种应用领域都对电机性能指标提出越来越高的要求,例如效率高、转速范围宽、体积小、重量轻、功率密度大、噪声低、成本低等,这要求电机设计必须兼顾电磁性能、温升性能以及机械设计方面等多物理场性能,同时还要考虑电机的成本、研发周期等因素,如何在最短的时间内将一款高性能、低成本的电机产品推向市场是目前各大电机厂商面对的课题。
现代电机设计是一个典型的多学科、强耦合、多变量、非线性的问题,其中多学科分析和优化设计扮演了非常重要的角色。电机设计工作的特殊性要求设计工具必须具有以下几方面特征:
将同时具有以上特征的设计工具与优化工具相结合,工程师便可以兼顾电磁、热、机械性能,在电机设计初期获得较好的设计方案,为后面的精确分析与优化奠定基础。Ansys Motor-CAD是目前全球范围内唯一包含电磁、热、机械的专业电机多学科设计工具,它同时兼顾了计算速度与精度,可在最短时间内完成电机初始方案设计,同时结合强大的Ansys optiSLang优化工具,从而使电机工程师在设计初期对电磁、热、机械性能进行快速综合优化的梦想变为可能。
借助于Motor-CAD与optiSLang,电机工程师可以在概念设计阶段快速评估设计参数对电磁、热、机械强度的综合影响,在最短时间内给出电机最佳初始设计方案,另外利用Motor-CAD与Maxwell、Twin Builder之间的接口,工程师可进一步对初始设计方案进行电磁场高精度分析、系统级场路协同仿真分析。
本文我们将通过两个例子来详细介绍Motor-CAD与optiSLang进行电机优化的方法。通过利用optiSLang中的MotorCAD Solver Wizard实现优化,以及利用optiSLang中的Python Solver Wizard如何来实现优化。
1利用optiSLang中的MotorCAD Solver Wizard实现优化
optiSLang中的MotorCAD Solver Wizard可以帮助用户快速创建Motor-CAD的参数化分析系统用于敏感性分析或优化设计,用户只需利用该向导导入Motor-CAD模型文件,软件会自动识别Motor-CAD中的参数,通过鼠标拖拽即可完成相关设置。
optiSLang中的MotorCAD Solver Wizard
MotorCAD 参数化分析系统
在MotorCAD solve中,用户可定义求解类型,软件目前支持电磁、热、Lab三个模块。
选择计算模块
另外还支持在求解结束后,自动导出Maxwell的vb建模脚本,以及Motor-CAD中电机的径向、轴向、3D模型的截图。
模型导出功能
在MotorCAD input中,软件可自动识别Motor-CAD中的各项输入参数,包括各种几何尺寸参数,求解设置参数等等,利用搜索功能可以快速定位所需参数,将相应的参数拖拽到左侧Parameter框,即可实现优化参数的选取。
选取设计参数:定子齿宽和槽深
在MotorCAD ouput中,软件自动识别Motor-CAD的所有计算结果参数,同样将其拖拽到右侧Response框即可实现优化目标的选取。
选取优化目标
利用MotorCAD Solver Wizard我们可以快速实现分析流程的搭建,前面的例子中我们选取了定子齿宽和槽深作为优化参数,选取了平均电磁转矩作为优化目标,接下来基于这个分析流程,利用optiSLang中的优化向导可以快速搭建一个优化流程。
加入优化模块
在优化向导中,分别定义优化参数的范围,以及参数的类型,连续型或者离散型等等。
设置参数范围
通过右键的简单操作,可以快速的定义优化目标类型,可定义最大化、最小化、固定值、或者将优化目标限制在一定的范围内。
设置优化目标
optiSLang的强大之处在于,它会根据定义的优化参数的数量和类型,以及优化目标的数量和类型,自动推荐最合适的优化算法,并以绿色圆圈显示,这大大降低了优化设计的门槛。
设置优化算法
优化分析workflow
以上是利用与optiSLang中的MotorCAD Solver Wizard进行电机优化基本流程,这个方法的特点是操作简单,对于一般的电机优化设计问题比较实用,但是它不够灵活,如果分析流程的Workflow比较复杂,可以利用下面的方法。
2利用optiSLang中的Python Solver Wizard实现优化
现代电机的运行工况往往处于一个十分宽的转速范围内,电机设计不仅关注某个运行点的性能更关注整个运行区域的性能,以新能源汽车永磁电机为例,电机的性能指标在“恒转矩区”和“恒功率区”都有相应的要求,而且二者往往是相互矛盾的,另外,除了峰值运行外特性,电机设计也关注持续运行外特性,这是考核电机设计水平的关键指标,电机持续运行能力是电磁与散热综合作用的结果,是典型的电磁-热耦合问题,对于这类电机的设计往往是比较困难的,即使是富有经验的工程师,在有些情况下也需要反复的调整设计参数,在峰值运行能力、连续运行能力、综合效率、成本、NVH等众多设计指标之间找平衡,最终费劲浑身解数得到了一个基本符合要求的方案,但是直觉告诉我们,这一定不是最优解,我们还可以做的更好。
例如下面的这个P2 PHEV电机的例子,电机的性能指标如表1所示。
表1 电机设计指标
初始设计方案
针对上述设计需求,我们可以设计以下Workflow进行分析:
我们可以看到这个分析流程涉及电机饱和模型的计算,饱和模型与热模型的双向耦合计算,同时还包括条件判断,如果在optiSLang中的MotorCAD Solver Wizard去搭建这个流程是难以实现的,这种情况我们可以利用optiSLang中的Python Solver Wizard来搭建,用Python Solver驱动py脚本,在py脚本中实现上述设计好的Workflow,在py脚本中可以很轻松的利用ActiveX调用Motor-CAD,同时也可以加入任意的数据前后处理和条件判断语句,随心所欲的设计Workflow并基于此进行优化分析。
打开Python Solver Wizard
利用Python Solver Wizard打开编写好的py脚本文件,optiSLang会自动识别py文件中定义好的输入、输出参数,可通过拖拽进行定义。
识别py中的参数
对于这个Workflow,由于涉及到饱和模型计算,Motor-CAD计算每个Design point的大概需要3-5分钟,如果直接进行多目标优化,计算10000个方案,即使使用并行计算,优化花费的时间也是非常长的,而且一旦后期优化目标有调整,就要重新计算。
另一种方法是先利用optiSLang中的Sensitivity模块先进行敏感性分析,从optiSLang7.5.1开始,Sensitivity模块会自动进行MOP元模型的提取,用户只需在Sensitivity中定义好输入参数范围和响应函数,以及DOE点数和COP迭代容差。
设置参数范围
软件会根据参数量自动推荐最适合的DOE算法,并以绿色显示。
DOE算法选择
在敏感性分析结果的后处理界面,可以查看输入参数与相应参数之间的相关性,例如我们可以查看定子内径、铁心长度与连续扭矩之间的关系,在最后一列,软件给出该输入参数与各响应参数之间的总体相关性COP,COP越接近100%,表示MOP模型的精度越高。
敏感性分析结果
根据经验,一般只需300-500个Design point就能得到足够高精度的MOP模型,然后在MOP模型的基础上加入Optimization模块进行优化,由于优化过程是基于MOP模型而不是直接有限元求解,因此优化速度很快,跑10000个方案只需10分钟左右。
此外,optiSLang还提供了丰富的结果后处理功能,可以方便的查看2D或3D帕累托前沿,也可以快速进行方案的筛选。
优化分析结果
当加入Optimization模块后,软件会自动创建Validator(有限元验证)的Workflow,在优化结束后,optiSLang会自动把帕累托前沿上的设计点发送到Validator节点进行有限元分析,并提供MOP与有限元分析结果对比。
有限元对比验证
通过对比视图,可以方便的查看MOP与有限元验证结果之间的误差,本例的精度还是可以满足工程需求,虽然基于MOP模型的优化方法牺牲了一点精度,但是节省了大量的计算成本,更加重要的是,仅仅基于一次敏感性分析得到的MOP模型,我们可以尝试采用不同的优化目标进行反复的优化分析,充分探索设计空间与设计指标之间的关系。
MOP和有限元验证结果对比
优化后的设计方案
通过本文的例子我们可以看到,将强大的Ansys Motor-CAD与optiSLang相结合则如虎添翼,收获超强电机设计工具,这种效应是1+1大于2的,利用这个工具,电机工程师不仅能解决电机优化设计问题,也可以进行电机各种设计参数之间的trade-off分析,还可以基于高保真的MOP模型,研究设计参数与性能指标之间的相关性,这在电机概念设计阶是非常有意义的。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删