介绍
在进行测试时,通常会花很多精力选择“正确”的测试工具。这其实只是为了实现次要目标。当然,一个适合开发环境、项目和流程的工具是重要的。然而,对于良好测试而言,最重要的是测试用例的质量。只有“好”的测试用例才会发现软件存在缺陷。
一个简单的例子
如下是对一个简单测试对象的说明:
“start”和“length”定义了“value”的取值范围。被测函数用来确定给定值是否在定义的范围内。规定范围的上界不在范围内。所有数据类型都是整数。
如下图所示的三个测试用例都通过了测试,并且达到了100%的MC/DC覆盖度。
图1 这三个测试用例通过并达到了100%的覆盖率
图1测试用例都通过并已经达到了100%的覆盖度,但没有对所有的需求进行测试,即没有使用边界值进行测试。
边界值,最小/最大值,极端值,违规值
边界值
需要多少测试用例(以及哪些测试数据)才能充分对边界值进行测试?下面使用一个“输入值是否小于5”的函数来研究这个问题。
图2 可能的实现以及哪些测试输入能检测缺陷
图2表格第一列我“输入值是否小于5”的可能缺陷(即错误实现)。其中(i!= 5)和(i <> 5)均为“不相等”,归属不同编程语言(“!=”属于C / C ++,Java;“<>” 属于Pascal,PHP,SQL,Excel)。
表2中第二列为缺陷的可能性组合。缺陷的可能性被认为与关系式中错误字符的数量和“外观”上的差异有关(从正确的(i <5)需要更多的改变才能将正确的(i <5)变换为不正确的(i> = 5),也更容易在视觉上发现)。
表2中后三列为输入值为4、5、6时的测试结果,粗体和红色阴影表示测试失败。输入值4和5未检测到(i!= 5)和(i <> 5),输入值6(即第三测试用例)检测到了。(i <> 5)的实现方式更有可能发生,但使用“<>”运算符的编程语言对于嵌入式系统并不常见。
(i == 4)无输入值检测到,需要额外输入值检测缺陷,需要四个测试用例(“内部”两个值和“外部”两个值)。这是René Tuinhout提出的黑盒边界值分析(B3VA)。“小于5”的值范围有更低边界且可作输入值,则不需要额外测试,下边界可以检测(i == 4)。
结论:嵌入式系统(使用“!=”作为关系运算符),进行代码审查且目标是测试用例的数量较少,仅使用两个测试用例就可以。但为了检测一些缺陷,有时需要四个测试用例。
最小/最大值
将给定数据类型的最大和最小(即最负)可能的输入值作为边界值的特殊情况。
图3 函数abs_short()存在一个在使用最大/最小值输入时才会发现的问题
图3函数abs_short()在输入值为-5,0,5时,分别正确返回5,0,5,实现了100%的代码覆盖率。但输入值是-32768时(带符号的16位整数的最小(最负)值),预期结果为+32768。无法在给定的整数范围内表示,返回值为-32768,不是预期值。(背景:-32768 = 0x8000.0x8000-1 = 0x7FFF。反转值为0x8000,与开始时的值相同。)
极端值
极端(或特殊)输入值不是直接取边界或最小/最大值,是另一种特殊值。
图4minimum()函数存在编程缺陷
图4是最小值函数。三个(无符号)整数(a,b和c)为输入,返回输入的最小值。
图5:用于检测最小值函数缺陷的测试用例
图5,为该函数运行通过的测试用例。检查每个位置是否能正确检测到最小值(3),100%代码覆盖率,但没有极端或特殊的输入。对此函数,特殊的输入可以是三个相同正值,如输入(3,3,3),结果为0(不是预期结果3),表示最小值功能的实现存在缺陷。
违规值
图3函数“所有数据类型都是整数”。适用length的取值范围,故长度可能是负的。输入5,-2为长度,查看4是否被认为在范围之内。用(可能的)无效输入构建测试用例。
ISO26262中的建议
ISO 26262:2011在第6部分第9节中列出软件单元测试的测试用例的设计方法。
图6:ISO26262中设计测试用例的方法
图6为建议取决于汽车安全完整性等级(ASIL)。ASIL的范围从A到D,D最高级别。“强烈推荐”双加号(“++”); “推荐”单个加号(“+”)。1a,1b,1c,...是替代条目; 1,2,3,...是连续的条目。替代条目,应根据ASIL应用适当的方法组合;连续条目,应按照ASIL进行应用。1a要求软件单元测试的测试用例来自需求;1b要求使用等价类的生成和分析来导出测试用例;1c要求分析边界值以导出测试用例。方法1a,1b和1c已在本文前面的部分中讨论过。1d要求错误猜测来导出测试用例。
错误猜测
错误猜测需要经验丰富的测试人员,从过往的经验中找到敏感的测试用例。它是一种非系统的方法。例如,被测系统有两个按钮,假设一次只按下其中一个按钮:如果同时按下两个按钮会发生什么?这是错误猜测的示例。
可选方案
本节讨论设计测试用例的其他可选方法。
来自源代码的测试用例
使用工具从源代码自动生成测试用例。一些开源和商业工具都实现了一些技术方法(例如遗传算法或回溯),可以利用生成测试用例。源代码生成测试用例要注意:
可以让工具生成测试用例并将其和需求进行比对,如果不符合要求再对其进行相应的拓展或改变。近期有研究人员对此进行了研究,其主要观点如下:
这项研究表明,自动化测试用例生成没有为测试带来优势,但它也没有缺点。虽有很多讨论的研究条件(编程语言,编程技巧等),但结果依然是令人惊讶的。
变异测试(Mutation Testing)
评定测试用例质量的一种可行方法是变异测试(在IEC 61508标准中也被称为“错误播种”(error seeding))。有运行通过的测试用例时,可以“变异”代码。如,将判断(i<5)改成(i<=5),在计算结果上加1,把“&&”改为“||”,注释掉部分代码等。代码进行变异之后,重新运行测试用例。若所有测试用例能够通过,测试用例质量就比较低。至少一项测试用例应该会由于进行了变异而无法验证通过。
小结
100%的代码覆盖率并不意味着“好”的测试用例。然而,在执行测试的过程中为了能够检测出软件的缺陷,需要高质量的用例。这项任务需要仔细而富有经验的人力工作才能达成,对于自动化生成的测试用例,应该持保留态度。
END
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删