CONVERGE 3.x系列版本是对2.x系列版本的一次重大升级。CSI公司调整了软件的架构,重写了整个软件代码,在软件各项功能和性能方面有了巨大的提升。接下来我们将推出系列推文,介绍这两个系列版本的差异,涵盖的主题将包括:软件性能对比,物理模型升级(含燃烧模型,喷雾模型,多相流模型,FSI模型,声学模型,电池模型等),行业应用升级(含发动机缸内,尾气后处理,航空发动机,新能源汽车,风力发电等)。
1. 锂电池安全性及热失控
锂离子电池由于其优秀的循环寿命、无记忆效应和高能量密度等特点成为便携式电子设备、电动车等广泛应用的动力源。然而,具有较高能量密度的电极材料具有较低的热稳定性,会导致潜在的安全问题,如通过热失控过程会发生灾难性和危险性的故障。此外,当电池组装成模块或电池包时,潜在风险更为严重,单个电池释放的热量会扩散到相邻电池,这反过来会导致周围单元加热从而进一步加剧每个电池单体进入到热失控的程度。这就可能成为热失控在整个模块中从一个单元到另一个单元的链式反应的开始,即热失控蔓延。
热失控的严重性在一定程度上是锂离子电池化学特性的一部分。即便是据称最安全的电动公交车上用的LFP电池仍然被报道发生过热失控。因此,锂离子电池安全性的研究就具有重要的意义,也非常有必要扩大对锂离子电池包在被滥用时热失控过程的了解。
另外,锂离子电池在电子设备、电动汽车、大型储能设备等应用中由于热失控引起的火灾和爆炸的新闻常在社会上引发轰动效应。可见,虽然发生爆炸的概率不高,但后果往往可能极高。常见的爆炸风险缓解和防止的策略包括排放易燃气体、泄放爆燃、向易燃混合物中添加惰性气体、抑制火焰膨胀、硬化结构等。这些策略需要对三种关键气体特性进行表征:较低的气体可燃性极限、层流火焰速度和更大绝热超压。
锂离子电池较重要的安全因素之一是其在各种滥用情况下的热稳定性。电池的不安全行为,即滥用行为是引发热失控的主要原因。电池滥用主要分为三大类:
a. 机械滥用:由于碰撞产生电池组挤压和穿刺从而引起电池组发生破坏性变形。电池组变形可能导致电池隔膜被撕裂从而发生内部短路以及易燃电解质泄漏引起燃烧。
b. 电气滥用:一般包括外部短路、过充电、过放电等,其中过充电由于其饱含能量,是电气滥用中危害最高的一种,伴随着热量和气体的产生。
c. 热滥用:在储运和使用过程中,由于意外受热造成锂电池单元暴露于热环境中就存在热滥用风险。局部过热是电池组中典型的热滥用情况。热滥用往往是由机械滥用和电气滥用发展而来,最终成为直接触发热失控的一环。
下图说明了锂电池常见滥用情况及热失控发生过程。
三种电池滥用及热失控
2. CFD仿真计算方案
2.1网格方案
常见的电池包模型几何难点在于内部空间狭小,结构之间小间隙很多,障碍物的存在对气体分布和火焰前端及发展预测有影响。同时复杂的几何结构给网格划分也带来一定的困难。CONVERGE采用其专利网格切割技术,在计算过程中实时自动生成适体网格,可以轻松应对电池包内部复杂空间结构内的网格生成。
CONVERGE灵活的网格加密策略包括固定加密技术和自适应网格加密技术(AMR)。固定加密技术可以对重要位置和壁面,如失控单元盖入口附近,固体壁面进行加密;AMR自适应网格可以基于流场变化加密,避免非预测性的全局加密,更加高效的追踪壳体内的气体扩散以及燃烧产生的火焰前端。
CONVERGE可以快速系统性的验证网格收敛性,有利于冷却策略的评估,避免由于网格方案和加密策略产生的局部温度预测差异,降低遗漏热失控触发风险的可能性。
多种网格策略灵活配置
2.2 网格方案
电池模块壳体内部的自然对流、强制对流过程是电池冷却和抑制热扩散的重要前提,同时电池单体热失控导致的易燃气体释放和在电池包内的扩散过程也是安全策略评估的重要方面。CONVERGE具备丰富的湍流模型,对于求解可压缩流体的运动过程具有更好的收敛性和更快的计算速度。用户可以利用CONVERGE采用BICGSTAB(双耦合梯度)求解器,自定义流场监控量和更大的CFL数快速完成电池包内流场、温度场稳态分析和评估。用户还可以通过瞬态分析完成可燃气体的扩散过程分析,结合CONVERGE独特的SAGE模型实现着火过程以及火焰发展时间的预测。
CONVERGE允许通过INFLOW的方式定义电池盖等破裂引起的排出物释放并填充壳体空间,同时用户可以借鉴大量的文献数据支持对不同电解质材料、不同充电状态下释放的可燃气体组分比例、流速曲线进行准确定义。
Lithium Battery Thermal Runaway Vent Gas Analysis, DOT/FAA/TC-15/59
2.3热源模拟
电池单体正常工作以及热失控过程都伴随着持续热释放。准确定义热释放过程是后续一系列过程仿真的关键。CONVERGE提供了热失控源项和电池热源帮助用户定义电池单元热。
a. 热失控源项
Hatchard-Kim模型构建了含SOC 100%的 钴酸锂(LiCoO2)/石墨模型,包含了4个放热放映过程的模拟:SEI膜分解放热、负极材料和电解质反应放热、正极材料和电解质反应放热、电解质分解放热。
Ren模型构建了Li(Ni1/3Co1/3Mn1/3)O2/石墨的模型,包含了6个放热过程的模拟:SEI膜分解放热、负极材料和电解质反应放热、负极材料和粘合剂反应放热、正极材料和粘合剂反应放热、正极材料分解放热、正极和负极间反应放热。
ARC实验环境下的软包电池热失控计算案例
b. 电池热源
CONVERGE中配置了等效电路模型来估算电池放热。模型化的电路由串联电阻和0~3对RC并行电路组成,发热量由电流、电阻和电容之间的电压、串联电阻计算得到。
等效电路模型
2.4燃烧模拟
CONVERGE独特的详细化学反应求解器SAGE采用adaptive zoning加速算法可以快速求解详细反应机理,准确模拟电池组壳体内从引燃到燃烧扩散的过程。CONVERGE还搭载了零维/一维燃烧工具可预测可燃极限和层流燃烧速度,这些结果可用来作为爆炸风险等分析以及材料温度管理的基准。
层流火焰速度燃烧极限预测
2.5热耦合模拟
开启CONVERGE的共轭耦合传热(CHT)模型可以求解固体域以及固体间导热,解析流/固界面耦合传热。Super-cycling超循环算法可以有效处理不同材料之间传热时间尺度不一致的问题,加速固体温度的收敛。
从GT-SUITE v2021以后,GT-CONVERGE(付费可选包)可以实现对电池模块的耦合模拟。GT-SUITE中可以使用FE模型和固体热容量对结构体进行温度计算,CONVERGE计算结构周围的流体,并在交界面处进行共轭传热计算。
空冷式电池模块GT-CONVERGE共轭传热计算
3. 场景应用
3.1 热滥用的预测和防止
电池包外部受热预测:预测耐火性试验中电池包受热情况
耐火试验下预测电池温度分
电池包内部传热预测:固体内部传热电池保内升温过程
电池包内部升温过程预测
3.2 电气滥用的预测和防止
内部短路等发生时,短路电流集中在电池单元内部出现局部高温区域。CONVERGE可使用Hatchard-Kim模型和Ren模型预测电池内部异常。
(Hatchard-Kim模型)
CONVERGE还可以评估冷却系统对热传播抑制效果,如冷却板内冷却液流量变化对电池温度分布的影响。
冷却板通道内流动及传热模拟
3.3机械滥用的预测和防止
机械滥用的结果如电池被压坏,电池内电解质蒸发产生气体膨胀并喷出电池包。CONVERGE不仅可以预测释放气体喷射和扩散状况,还可以预测喷射气体的爆炸和燃烧。
释放气体扩散和爆炸预测
4. CONVERGE v3.x和v2.x在电池安全性模拟应用中的功能对比
综上所述,CONVERGE在电池安全性预测及防止策略评估方面提供了成熟完整的仿真方案。在具体功能的实现上,CONVERGE v3.x版本和v2.x版本存在较大的差别,如下表所示。
从功能对比可以看出,CONVERGE v3.x版本在电池热失控模拟方面具有不可替代的优势,欢迎新老用户升级和试用最新的版本。
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删