影响CFD仿真计算收敛的因素有很多,其中大规模数量的单元、设置过于保守的亚松弛因子和复杂的流动特性通常是造成仿真计算收敛困难的主要原因。
由于对CFD仿真计算的收敛性没有一个统一的判断标准,所以判断一个求解问题是否收敛通常是困难的。对于典型的一些流动问题,使用残差来判断是否求解是否收敛通常是有用的,然而对于一些其他的流动问题,则可能会被残差变化所误导。判断一个求解问题是否收敛的较好办法是:在使用残差来判断求解问题收敛的同时,检测相关物理量(阻力或者热传输系数)的变化情况。对于大多数流动问题,ANSYS Fluent默认的收敛标准是合适的,但有时却是不合适的,这包括以下问题的求解:
1)对于连续性方程,给定了一个较好的初始值,开始的残差可能会非常小从而导致一个较大的比例残差。对于一些情况,检查非比例残差并将其与一个合适的比例相比较是有用的,例如在入口的质量流量下。
If you make a good initial guess of the flow field, the initial continuity residual may be very small leading to a large scaled residual for the continuity equation. In such a situation it is useful to examine the unscaled residual and compare it with an appropriate scale, such as the mass flow rate at the inlet.
2)对于湍流方程,给定一个较差的初值,这可能会导致较高的比例因子。在这种情况下,比例残差刚开始会很小,随后非线性的增加,随后减小。因此对于收敛判断的一个好习惯不仅仅关注于残差值本身,而且还应当包含它的行为。在判断结果是否收敛之前,你应当确保在经过一定步数的迭代后(例如50步或者更多),残差连续性的减少或者维持在一个较低的水平。
For some equations, such as for turbulence quantities, a poor initial guess may result in high scale factors. In such cases, scaled residuals will start low, increase as nonlinear sources build up, and eventually decrease. It is therefore good practice to judge convergence not just from the value of the residual itself, but from its behavior. You should ensure that the residual continues to decrease (or remain low) for several iterations (say 50 or more) before concluding that the solution has converged.
关于收敛性的判断,还有另一种流行的方式,那就是非比例残差下降至少3个数量级。对于这种方式,ANSYS提供了残差归一化功能。这种判断方法要求归一化非比例残差降低到〖10〗^(-3),然而对于以下几种情况,该判断方法可能并不合适。
1)如果给定一个较好的初始值,那么残差可能不会降低三个数量级。例如在一个接近于等温流动中,当给定的初始温度是非常接近于最终求解的温度时,能量残可能并不会降低三个数量级。
If you have provided a very good initial guess, the residuals may not drop three orders of magnitude. In a nearly-isothermal flow, for example, energy residuals may not drop three orders if the initial guess of temperature is very close to the final solution.
2)如果控制方程中包含了非线性源项,这个源项在计算的初始阶段为零随后在整个计算过程中缓慢上升,那么残差可能是不会降低三个数量级的。例如在一个密闭腔室的自然对流中,由于初始的温度场是均匀的,不会产生浮力,所以初始的动量残差几乎为零。在这样的情况下,初始的零残差并不是一个好尺度的残差。
If the governing equation contains nonlinear source terms which are zero at the beginning of the calculation and build up slowly during computation, the residuals may not drop three orders of magnitude. In the case of natural convection in an enclosure, for example, initial momentum residuals may be very close to zero because the initial uniform temperature guess does not generate buoyancy. In such a case, the initial nearly-zero residual is not a good scale for the residual.
3)如果感兴趣的地方其物理量近乎为零,那么这个位置的残差也不会降低三个数量级。在完全发展的管道流中,横截面的速度为零。如果速度在初始化时设置为零,初始和最终的残差都接近零,所以三个数量级的残差下降是不被期望的。
If the variable of interest is nearly zero everywhere, the residuals may not drop three orders of magnitude. In fully-developed flow in a pipe, for example, the cross-sectional velocities are zero. If these velocities have been initialized to zero, initial (and final) residuals are both close to zero, and a three-order drop cannot be expected.
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删