当前位置:服务支持 >  软件文章 >  fluent入门常见问题(五)解答与经验分享

fluent入门常见问题(五)解答与经验分享

阅读数 7
点赞 0
article_banner

Fluent,并非我原创但是没找到出处,给大家做个参考。


50  在设置速度边界条件时,提到了“Velocity formulation(Absolute和Relative)”都是指的动量方程的相对速度表示和绝对速度表示,这两个速度如何理解?  #59
在定义速度入口边界条件时,Reference Frame中有Absolute和Relative to Adjacent Cell Zone的选项,关于这个,Fluent用户手册上是这样写的:“ If the cell zone adjacent to the velocity inlet is moving, you can choose to specify relative or absolute velocities by selecting Relative to Adjacent Cell Zone or Absolute in the Reference Frame drop-down list. If the adjacent cell zone is not moving, Absolute and Relative to Adjacent Cell Zone will be equivalent, so you need not visit the list. ”

如果速度入口处的单元在计算的过程中有运动发生的情况(如果你使用了运动参考系或者滑移网格),你可以选择使用指定相对于邻近单元区域的速度或在参考坐标系中的绝对速度来定于入口处的速度;如果速度入口处的相邻单元在计算过程中没有发生运动,那么这两种方法所定义的速度是等价的。

Specifying Relative or Absolute Velocityfluent入门一般问题(五)的图1

If the cell zone adjacent to the wall is moving (e.g., if you are using a moving reference frame or a sliding mesh), you can choose to specify velocities relative to the zone motion by enabling the Relative to Adjacent Cell Zone option. If you choose to specify relative velocities, a velocity of zero means that the wall is stationary in the relative frame, and therefore moving at the speed of the adjacent cell zone in the absolute frame. If you choose to specify absolute velocities (by enabling the Absolute option), a velocity of zero means that the wall is stationary in the absolute frame, and therefore moving at the speed of the adjacent cell zone--but in the opposite direction--in the relative reference frame.

If you are using one or more moving reference frames, sliding meshes, or mixing planes, and you want the wall to be fixed in the moving frame, it is recommended that you specify relative velocities (the default) rather than absolute velocities. Then, if you modify the speed of the adjacent cell zone, you will not need to make any changes to the wall velocities, as you would if you specified absolute velocities.

Note that if the adjacent cell zone is not moving, the absolute and relative options are equivalent.

这个问题好像问的不是特别清楚,在Fluent6.3中,问题出现的这个Velocity formulation(Absolute和Relative)设置,应该是设置求解器时出现的选项,在使用Pressure-based的求解器时,Fluent允许用户定义的速度形式有绝对的和相对的,使用相对的速度形式是为了在Fluent中使用运动参考系以及滑移网格方便定义速度,关于这两个速度的理解很简单,可以参考上面的说明;如果使用Density-based的求解器,这个求解器的算法只允许统一使用绝对的速度形式。


51 对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?#42
   答:给定流动出口的静压。对于有回流的出口,压力出口边界条件比质量出口边界条件边界条件更容易收敛。

    压力出口边界条件压力根据内部流动计算结果给定。其它量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。 出口回流条件需要给定:回流总温(如果有能量方程),湍流参数(湍流计算),回流组分质量分数(有限速率模型模拟组分输运),混合物质量分数及其方差(PDF  计算燃烧)。如果有回流出现,给的表压将视为总压,所以不必给出回流压力。回流流动方向与出口边界垂直。


52  对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?    #69
控制方程的扩散项一般采用中心差分格式离散,而对流项则可采用多种不同的格式进行离散。Fluent允许用户为对流项选择不同的离散格式(注意:粘性项总是自动地使用二阶精度的离散格式)。默认情况下,当使用分离式求解器时,所有方程中的对流项均用一阶迎风格式离散;当使用耦合式求解器时,流动方程使用二阶精度格式,其他方程使用一阶精度格式进行离散。此外,当选择分离式求解器时,用户还可为压力选择插值方式。

当流动与网格对齐时,如使用四边形或六面体网格模拟层流流动,使用一阶精度离散格式是可以接受的。但当流动斜穿网格线时,一阶精度格式将产生明显的离散误差(数值扩散)。因此,对于2D三角形及3D四面体网格,注意使用二阶精度格式,特别是对复杂流动更是如此。一般来讲,在一阶精度格式下容易收敛,但精度较差。有时,为了加快计算速度,可先在一阶精度格式下计算,然后再转到二阶精度格式下计算。如果使用二阶精度格式遇到难于收敛的情况,则可考虑改换一阶精度格式。

对于转动及有旋流的计算,在使用四边形及六面体网格式,具有三阶精度的QUICK格式可能产生比二阶精度更好的结果。但是,一般情况下,用二阶精度就已足够,即使使用QUICK格式,结果也不一定好。乘方格式(Power-law Scheme)一般产生与一阶精度格式相同精度的结果。中心差分格式一般只用于大涡模拟,而且要求网格很细的情况。

Fluent用户手册上的内容:

First-Order Accuracy vs. Second-Order Accuracy

When the flow is aligned with the grid (e.g., laminar flow in a rectangular duct modeled with a quadrilateral or hexahedral grid) the first-order upwind discretization may be acceptable. When the flow is not aligned with the grid (i.e., when it crosses the grid lines obliquely), however, first-order convective discretization increases the numerical discretization error (numerical diffusion). For triangular and tetrahedral grids, since the flow is never aligned with the grid, you will generally obtain more accurate results by using the second-order discretization. For quad/hex grids, you will also obtain better results using the second-order discretization, especially for complex flows.

In summary, while the first-order discretization generally yields better convergence than the second-order scheme, it generally will yield less accurate results, especially on tri/tet grids. See Section  25.22 for information about controlling convergence.

For most cases, you will be able to use the second-order scheme from the start of the calculation. In some cases, however, you may need to start with the first-order scheme and then switch to the second-order scheme after a few iterations. For example, if you are running a high-Mach-number flow calculation that has an initial solution much different than the expected final solution, you will usually need to perform a few iterations with the first-order scheme and then turn on the second-order scheme and continue the calculation to convergence. Alternatively, full multigrid initialization is also available for some flow cases which allow you to proceed with the second-order scheme from the start.

For a simple flow that is aligned with the grid (e.g., laminar flow in a rectangular duct modeled with a quadrilateral or hexahedral grid), the numerical diffusion will be naturally low, so you can generally use the first-order scheme instead of the second-order scheme without any significant loss of accuracy.

Finally, if you run into convergence difficulties with the second-order scheme, you should try the first-order scheme instead.

Other Discretization Schemes

The QUICK and third-order MUSCL discretization schemes may provide better accuracy than the second-order scheme for rotating or swirling flows. The QUICK scheme is applicable to quadrilateral or hexahedral meshes, while the MUSCL scheme is used on all types of meshes. In general, however, the second-order scheme is sufficient and the QUICK scheme will not provide significant improvements in accuracy.

##If QUICK is used for hybrid meshes, it will be invoked only for quadrilateral and hexahedral cells. Second-order discretization will be applied to all other cells.

A power law scheme is also available, but it will generally yield the same accuracy as the first-order scheme.

The bounded central differencing and central differencing schemes are available only when you are using the LES and DES turbulence models, and the central differencing scheme should be used only when the mesh spacing is fine enough so that the magnitude of the local Peclet number (Equation25.3-3) is less than 1.

A modified HRIC scheme (Section25.3.1) is also available for VOF simulations using either the implicit or explicit formulation


53  对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant数对计算结果有何影响?  #43
courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。

在Fluent中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。


54  在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同?  #44
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下:

对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速度耦合所限制,你通常可以用SIMPLEC算法很快得到收敛解。在SIMPLEC中,压力校正亚松驰因子通常设为1.0,它有助于收敛。但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致不稳定。

对于所有的过渡流动计算,强烈推荐使用PISO算法邻近校正。它允许你使用大的时间步,而且对于动量和压力都可以使用亚松驰因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松驰因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。
当你使用PISO邻近校正时,对所有方程都推荐使用亚松驰因子为1.0或者接近1.0。如果你只对高度扭曲的网格使用PISO倾斜校正,请设定动量和压力的亚松驰因子之和为1.0比如:压力亚松驰因子0.3,动量亚松驰因子0.7)。如果你同时使用PISO的两种校正方法,推荐参阅PISO邻近校正中所用的方法。


55  对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求?
   #60 

压力插值方式的列表只在使用Pressure-based求解器中出现。一般情况下可选择Standard;对于含有高回旋数的流动,高Rayleigh数的自然对流,高速旋转流动,多孔介质流动,高曲率计算区域等流动情况,选择PRESTO格式;对于可压缩流动,选择Second Order;当然也可以选择Second Order以提高精度;对于含有大体力的流动,选择Body Force Weighted。

注意:Second Order格式不可以用于多孔介质;在使用VOF和Mixture多相流模型时,只能使用PRESTO或Body Force Weighted格式。

关于压力插值格式的详细内容,请参考Fluent用户手册。

 

Interpolation schemes for calculating cell-face pressures when using the segregated solver in FLUENT are available as follows:

 

Standard – The default scheme; reduced accuracy for flows exhibiting large surface-normal pressure gradients near boundaries (but should not be used when steep pressure changes are present in the flow – PRESTO! scheme should be used instead.)

 

PRESTO! – Use for highly swirling flows, flows involving steep pressure gradients (porous media, fan model, etc.), or in strongly curved domains

 

Linear – Use when other options result in convergence difficulties or unphysical behavior

 

Second-Order – Use for compressible flows; not to be used with porous media, jump, fans, etc. or VOF/Mixture multiphase models

 

Body Force Weighted – Use when body forces are large, e.g., high Ra natural convection or highly swirling flows


fluent入门一般问题(五)的图2

                                                              想学习更多的知识,请联系我们!

                                                              微信公众号:名称:“DR有限元”

                                                                                    号码:“hello_cae”



免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删
相关文章
QR Code
微信扫一扫,欢迎咨询~

联系我们
武汉格发信息技术有限公司
湖北省武汉市经开区科技园西路6号103孵化器
电话:155-2731-8020 座机:027-59821821
邮件:tanzw@gofarlic.com
Copyright © 2023 Gofarsoft Co.,Ltd. 保留所有权利
遇到许可问题?该如何解决!?
评估许可证实际采购量? 
不清楚软件许可证使用数据? 
收到软件厂商律师函!?  
想要少购买点许可证,节省费用? 
收到软件厂商侵权通告!?  
有正版license,但许可证不够用,需要新购? 
联系方式 155-2731-8020
预留信息,一起解决您的问题
* 姓名:
* 手机:

* 公司名称:

姓名不为空

手机不正确

公司不为空