随着技术的更新迭代,ADAS(智能辅助驾驶)、AEB、ACC、LKA等新技术正在逐渐变成智能汽车的标配, 然而随着汽车智能化水平不断提升的同时,整车安全性的重要性日渐凸显,欧洲新车碰撞测试(EURO-NCAP)首先在2018年将AEB、LDW等列入ADAS测试项目,并且测试项目逐年增多。
《C-NCAP管理规则(2021年版)》已于2020年8月25日正式发布,将于2022年1月1日正式实施。C-NCAP 2021版主要包括AEB、LKA、SAS等,并且C-NCAP评价场景也逐年增加。
面向未来的自动驾驶技术
汽车主机厂该如何通过C-NCAP认证?
在C-NCAP认证中,ADAS(智能辅助驾驶)测试包括模型在环(MiL)、软件在环(SiL)、硬件在环(HiL)、车辆在环(ViL)、场测、路测等环节,测试内容包括传感器、算法、执行器等方面,测试包括应用功能、性能、稳定性和鲁棒性、功能安全、形式认证等。
传统开发方法是基于大量的台架测试和实车测试来实现,不仅试验周期长,成本高,且安全无法保障,尤其对于ADAS这种关键技术,其试验行驶环境不可预测,测试场景难以复制/重现、不可自动化测试。
达索系统CATIA SCANeR™ 软件可对交通场景仿真及虚拟传感器建模,也能够对车辆动力学建模,建立涵盖真实底盘执行系统的测试模型,同时基于NCAP中定义的典型工况进行仿真分析,搭建AEB功能涉及的虚拟交通场景,对车辆动力学及虚拟传感器进行参数化建模(也可以基于试验数据),通过调整测试参数,来实现法规要求参数的定量分析矩阵。SCANeR™构建的测试环境也能够为ADAS系统提供完整的“人-车-路”仿真测试环境,对符合C-NCAP规范要求的ADAS系统测试评价提供一个良好的开发方法。
开始提供C-NCAP模型包
新本中的模型包提供完整的C-NCAP测试环境工况、虚拟环境和场景脚本,满足不同类型的C-NCAP标准所要求的测试验证场景库。基于这些场景库,企业可以减少测试环境搭建的时间,缩短获取C-NCAP认证的时间和成本。
C-NCAP模型包可以帮助工程师使用标准化的用例和场景,从而更快地构建AD/ADAS、Headlights和其他驾驶模拟。其中包含的虚拟环境、场景脚本、C-NCAP驾驶员AI和测试标准能够助力企业在C-NCAP场景下进行测试和分析AD/ADAS控制算法,并根据预期结果进行改进,助力企业通过C-NCAP测试。
统一平台:支持多场景的自驾仿真验证
CATIA SCANeR™是一个模块化开放式的自动驾驶虚拟仿真验证方案,提供道路环境、车辆、传感器、交通建模、场景编辑、海量仿真以及逼真的实时3D可视化功能,也可以实现机器学习算法设计、AD/ADAS算法设计、传感器布置和性能设计、车辆动力学行为设计、CAD布置设计、驾驶员人因分析、信息和娱乐系统交互性分析,以及面向海量场景的并行仿真验证。
在SCANeR™工具中主要分为场景脚本、虚拟环境、仿真模块三个区框,分别对相应的脚本和模型进行配置编辑。
安装CATIA SCANeR™内置相关NCAP库文件,就可以直接获得CCRs AEB测试所需要虚拟环境和场景脚本。
与此同时,应用CATIA SCANeR™工具可以实现X-in-Loop多层级、多执行平台的虚拟仿真验证活动。企业可以通过单机工作站、HPC超算中心以及云资源实现SiL和MiL层级的测试,进而通过以太网等接口实现与目标ECU的HiL层架测试,并结合应用不同复杂程度的硬件支持实现驾驶员在环DiL或者车辆在环ViL层级的测试工作。
达索系统3DEXPERIENCE平台在虚拟仿真解决方案的基础之上进一步拓展到前期的场景开发,架构定义,感知技术与软件算法,为客户提供完整的一体化解决方案,最大化的基于数字主线实现全流程的数字孪生。
某客户使用CATIA SCANeR™ 中NCAP场景库在虚拟环境中快速生成了符合NCAP的AEB测试交通场景、车辆动力学模型、测试驾驶员AI等,依靠虚拟孪生,在虚拟世界中仿真、验证企业AEB算法,减少物理世界试验样车,最终减少了一个物理原型并且缩短了50%的开发时间,快速获取了EURO-NCAP认证。
-END-
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删